2010 Qualifying Exams
Department of Physics and Astronomy, UNC Chapel Hill

Quantum Mechanics, part I: May 10, 9:00am-12:00pm

Choose 3 out of 5 problems

Start a new page for each problem. Label each page with the subject problem
number and your PID, but not your name.

QMI-1 Three Hermitian operators satisfy the following commutations rela-
tions: [A,C] = |B,C]=0and [A, B} #0.
Show that the spectrum of the operator C' contains degenerate eigen-
values.

QMI-2 Here is a guided proof that there are wave functions that oscil-
late back and forth in a one-dimensional harmonic oscillator without
spreading:

(a) Consider a state of the form

[y = e PR g},

where § is the usual momentum operator, at time %y == 0. How is this
state related to |¢)?

(b) Show that in the Schrodinger picture, the state vector |i(¢)) for ¢ > 0

is given by
[$(t)) = e (1))

where {¢({t)) is the Schridinger-picture state that evolves from |¢}, and
H(t) is the Heisenberg-picture operator that evolves from the usual mo-
mentum operator p.

(c) Now let the system be a harmonic oscillator with oscillator frequency w.
Find p(~t) in terms of the § and the usual position operator £. (Hint:
For linear systems like the oscillator, the solutions to the Heisenberg
equation of motion are the same as the classical solutions.}

(d) Now suppose |¢) is the oscillator ground state. Use the fact that

A4+-B A LB —1/2[A B} (1)

e = erere

(if |A, B] commutes with both A and B) and the form of the ground
state wave function )
(z|¢) x e™ (2)

to show that while the wave function {z]i(¢)} moves, it doesn’t spread.

1



QMI-3 A particle of mass m is subject to the one-dimensional potential
U{z) = —ad(z ~ a) for z > 0, and U(z) = oo for z < 0.

(a) Find the number of bound states as a function of the parameter ama/h*.

(b) Is the effective force acting between the particle and the wall repulsive
or attractive?

QMI-4 Arbitrary spin operator. A non-interacting, spin-1/2 particle has
an angular momentum component that is determined to be pointing
in the 43 direction. The spin is then measured along an arbitrary
direction, 7.

(a) What is the total intrinsic angular momentum of this particle?

(b) Find the expectation value for the angular momentum measure-
ment in the fi-direction.

(c¢) Assume for this and the subsequent question that the angle be-
tween the +# vector and A is 7/4 radians. Find the probability
that the angular momentum component measured in #-direction
is positive.

(d) A measurement of the angular momentum component pointing in
the # direction is performed, and it is found to be greater than
zero. What are the possible outcomes for another subsequent
measurement of the angular momentum component along the z-
axis and what are their probabilities?

Reminder:

QMI-5 Non-rigid rotator. Consider a diatomic molecule consisting of
identical atoms, each of mass m, and with a separation between nuclei
of ry when the molecule is in the zero angular momentum state (L = 0).
Asgsume that the binding force between the atoms can be modeled as a
spring with spring constant k. Answer the following questions:

(a) The rotational excitation levels in most diatomic molecules have
much lower energies than that of the vibrational excitation levels.
Find a relationship between m, 7o, and k that has to be satisfied
for this to be true.



(b) Assume that the molecule satisfies the condition that you found in
part (a). It is placed in a gas with enough thermal energy to excite
the rotational but not vibrational levels. By correcting for the
fact that this molecule is not a rigid rotator, find the approximate
frequency of a photon emitted during a transition from the first
excited to ground rotational states.
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Choose 3 out of 5 problems

Start a new page for each problem. Label each page with the
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SM-1 Consider the ideal Fermi gas where the single-particle eigenstates and
eigenvalues of the Hamiltonian are s and £, respectively.

(a) Based on the quantum properties of fermions, derive the grand
partition function of such system with given fugacity z volume ¥ and
temperature 7'is given by

I(z, V,T) . I—I(l T ze"ﬁ‘,l'k"?‘)

(b)Write down the relationship between I and the grand canonical
potential ®=U~-T§ - uN =PV .

SM-2 Consider the internal rotational degree of freedom of a diatomic molecule

with a moment of inertia Z Its Hamiltonian is given by H,, = I* /(2]) and

r

Lmy=1(1+ 1) B |Lm) with 1 =0,1,2,.., m=—L—~[+1,..,0.

(a) Write down the expression of its partition function associated with rotation
(ignore the nuclear spin effect).

(b) Based on the result of (a), calculate U, =U

rot

(T} at the low temperature
limit.

(c) Now consider molecular H, where the effect of nuclear spins has to be
taken into account. Protons are spin-1/2 fermions and the two spins can

form singlet and triplet states. Write down the partition function of rotation
with the effect of the nuclear spin states included.

SM-3 Calculate the Joule-Thomson coefficient (8U / 6V),,, where U/ is the

internal energy for a non-ideal gas described by the van der Waals’ equation of
state P=RT/(V -B)-alV?.



SM-4 The average energy of a system in thermodynamic equilibrium is (E ) .
(a) Show that the mean square of the energy deviation from its average value

equals <(E —{E))2> =k,7°C, .
(b) Estimate, for a system of N>>1 particles, the relative deviation
<(E - (E>)2> /<E2> in the high-temperature limit,

SM-5 There have been recent attempts to interpret gravity as an entropic force
(and possibly there are gaps in physical reasoning. But let us play along).

(a) Consider the entropic force FSx=T78S , where &x denotes an
infinitesimal spatial separation, and fix &x by the Compton wavelength

Ox=h/ (mc) for the particle of given mass m, for the infinitesimal
increase of entropy 85 = 2xk, . Let us postulate the entropic change to be
linear with the change in distance &S =27k, (mc/h)éx . Now, let us

further adopt the famous formula k,T =ha/(2zc) for the (Unruh)

temperature associated with a uniformly accelerated (Rindler) observer
with acceleration a. Derive the second law of Newton F=ma.

(b) Consider a point particle of mass M at the origin. One can associate an

energy E = Mc® with this mass. But, let us assume that this energy is
equal to the energy of N degrees of freedom at temperature T on the

surface of the sphere of radius r, where N = Ac’ /(G k) (with 4 =4zr*).

Use the equipartition theorem, the Unruh temperature expression, and the
result in (a) to derive Newton’s law for the gravitational force:

F=GuMmir,
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EMI-1 What is the potential in a rectangular region bounded by 0 < z < q,
and 0 < y < b, given that the boundary conditions on the potential
are that it vanishes on the two edges that have y = constant, that
it is constant ¢q (not zero) on the edge that has © = a, and that its
derivative vanishes on the edge z == 0. Give a physical explanation for
the mathematical content of your answer.

EMI-2 A thin spherical shell of radius R carries a uniform surface charge
density o. The shell is rotating along z axis with angular frequency w.
{a) Write down the surface current density associated with the rotating
charge, and the boundary condition for the magnetic fleld cross the
shell.

{b) Show that the magnetic scalar potential is given by
., (r,8,0) = %oercosH for r < R, and
P (r, 8, ¢) = %dwf—:cosﬁ for r > R.

{c) Caleulate the magnetic field both inside and outside R.

EMI-3 (a) Calculate the electric potential around a symmetric quadrupole
comprising charge —2q at the origin and charges g at distance a above
and below on the z axis. Obtain the usual far field approximation for
large r at the end.

(b) Now for same quadrupole inside a grounded conducting sphere of
radius b > a, calculate the potential for all points r > a. Again obtain
the far field approximation for all r >> a. (Hint: consider image
charges.)

EMI-4 (a) Write the differential form of Maxwell’s equations in vacuum

with sources.

(b) When B; = e AF and E; = —8;¢ + GoA;, show which two of
Maxwell’s equations are automatically satisfied.

(¢) Show that V x (V x 4) = V(V - A) — V2A.

Hint: Use (@ x sz)z = eijkﬁj.ﬁi‘“ and €iikCimk = 5@'3(5“1'7” - 5,;m6jg.



(d) Give the gauge transformation on the vector potential A* that
leaves invariant the magnetic field B;. Show that the gauge transfor-
mation ¢ — ¢— %% combined with a gauge transformation on A* leaves
invariant the electric field E;.

e) Write the remaining two Maxwell’s equations, that are not auto-
matically satisfied, in terms of the potentials A; and ¢ in the gauge
V - A =0, when A;,(T) and ¢(Z) are independent of time.

EMI-5 A thin uniform metal disk with mass density p is balanced on top of
a much larger diameter conducting sphere of in a uniform gravitational
field. The radius of the sphere is R and it never moves. Charge is slowly
added to the sphere. At what total charge ¢ on the sphere would the
disc starts to lift off from the sphere?
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CM-1 Consider a mechanical system for which the potential energy V' (1, 73...)
is a homogeneous function of the coordinates 7; of degree n. Let us scale
all the coordinates by a factor of & and the time by a factor of 3.

(a) Show that for 8 = o'~ %, the equation of motion is NOT changed
under these scaling operations.

(b) Show that for 3 = a!~%, the same set of equations of motion
permits a series of geometrically similar paths with the times of
motion between corresponding points being given by the ratio % =

() "% where L is the ratio of linear dimensions of the two paths.
What else is required besides scaling of the potential and time in
order to permit self-similiar motion?

(c) Show that for harmonic oscillators, the period of oscillations is
independent of their amplitudes (by using part b).

(d) Show that in free fall under gravity, the time of fall goes as the
square root of the initial altitude (by using part b).

CM-2 If the mass and spring constant in a harmonic oscillator have a par-
ticular time dependence, one can arrive at the time-dependent Hamil-
tonian

2
P 1 59
H = f(t) |+ + -t ,
Ft) [2 — + omw'g }

where w is a constant and f(¢) is the derivative of some other well
behaved function g{t).

(a) Write the Hamilton Jacobi equation for Hamilton’s principal func-
tion S{g, &, t), where « is the “new” momentum.

(b) Solve the equation to find g¢(f) in terms of the usual constants
« and 3. How would you describe the physical meaning of the
constant «?



CM-3 A particle of mass m moves in one dimension (along z) under a
potential
V = d?zt — 20742,

where o and b are constant parameters.

(a) Determine the locations of the equilibria.

(b) Find the frequency of small amplitude motion about stable equi-
libria.

(c) Find the exponential growth rate for small amplitude motion away
from the unstable equilibrium.

(d) Derive the Hamiltonian and sketch the surfaces of constant energy
in phase space.

CM-4 The Liouville theorem states that areas in phase space are conserved.
Consider an ensemble of free particles and the initial £ = 0 phase space
distribution drawn below:

(a) Without using the Liouville theorem itself (unless you want to
derive it), show that at time ¢ the region has evolved into another
region with the same area.

(b) Liouville’s theorem can be proven by showing that the transfor-
mation from ¢g,pe to ¢(t}, p{t) is canonical for any time ¢. Show
explicitly that the transformation is canonical in this simple ex-
ample.



CM-5 Consider a particle of mass m that is confined to the surface of a
torus and is acted upon by a uniform gravitational acceleration g. Let
the torus have minor radius b and major radius a. Positions on the
torus are described by two angle coordinates, § and ¢. The angle ¢
is an azimuthal coordinate that circles the symmetry axis z (i.e., goes
around the torus the long way) and 6 goes through 27 as it circles the
circular cross section of radius b. The transformation between cartesian
coordinates and toroidal coordinates is

= {a-+ bsinf)cos¢
(¢ + bsin ) sin ¢
z = bcosh,

and the line element (or metric) for the surface geometry of the torus

18
ds® = *d6* + (a + bsin )2 d¢?,

which can be used to find the velocity {tangent vector) of any trajectory
on the toroidal surface.

(a) Obtain the Lagrangian for motion on the toroidal surface.

(b) Determine the symmetries of the Lagrangian and the conserved
guantities.

(c) Assuming there is some motion in the ¢ direction, obtain the ef-
fective potential for motion in 8.

(d) Assuming you are told that, under steady motion in ¢ at a cer-
tain rate £, the particle maintains a constant equilibrium angle
6,. Given some #,, use the equations for equilibium to determine
expressions for the values of the conserved quantities.
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QMII-1 Atomic Resonance. Consider a single electron that experiences
a static central potential V{r). We add a weak, external, time-varying
magnetic field with a corresponding vector potential A(r,t). Use a
specific case of the Lorentz gauge for this problem:

104

VA= =0

(a) Write down the Hamiltonian for this system.

(b) Assume that the perturbation due to A is much smaller than the
energy scale imposed by V. Use this property and the Lorentz
Gauge condition to write the Hamiltonian as a sum of a static,
unperturbed part and a smaller, time-dependent part. You may
find the following vector identity useful:

VA(Af)=(V - A)f+A- (V)
(c) Assume that the weak, time-varying potential is of the form:
A(l) = Agcoswt

where A may be assumed constant on the scale of the electron’s
wavefunction. Let a solution to the unperturbed potential from
part (b) be written as:

v(t) = > cu(t)en(t)
f

where 1), are the eigenfunction of the unperturbed Hamiltonian.
Assume that the system is in eigenstate m of the unperturbed
Hamiltonian at £ == 0. Find the probability that the system will
be in eigenstate n at a later time, given that m # n. You may
collect all the time-independent coefficients (constants, expecta-
tion values, etc.) into one constant, N, that you are not required
to evaluate.



(d) Assume that the value of the driving frequency, w, is very close to
the value of

W = (Em - n)/ﬁ,
and simplify the expression you found in part (c) further.

(e) Under the assumption from part (d}, sketch the transition proba-
bility for the transition from state m to state n as a function of
Wmn. Comment on and discuss your result.

QMII-2 Morse Potential. A phenomenological formula that describes the
interaction potential between two atoms in a diatomic molecule is the
so-called Morse Potential:

V(r) = D(1 — g7or—mo)2
where r is the separation between the atomic nuclei.

(a) Sketch this potential and provide a physical interpretation of the
parameters D and rg.
(b) Provide a qualitative sketch of the energy-levels of this potential.

(¢) Find a potential to approximate the given Morse potential and find
the first non-zero perturbation theory correction to the ground
state for that potential.

You may find the following information useful:

oo — 1
/ 2P g = M, nl=nx(n-—-2)x{n-4)x..
0

2(2p)”
oo !
o+l —pz? - 3
/0 T g Pe dm—————anH
_ M1 g e, e [T
e (z) (ﬂh) \/W n{V)e 2V 3 T

QMII-3 A particle of mass m is temporarily captured in a state with angular
momentum ! > 0 and energy £ > 0 inside a sphericallly-symmetrical
well of depth V and radius R. Neglecting the centrifugal barrier within
the well, evaluate the half-life time r of such a metastable state.



QMII-4 Particles in a well. Three identical, spin—% particles, each with
mass m, are trapped in an isotropic three dimensional harmonic oscil-
lator well with a classical angular oscillation frequency w. The only
interaction that the particles experience amongst themselves is the
coupling between their intrinsic magnetic dipole moments (). The
potential energy of this coupling is equal to the dot product of the two
dipole moments, multiplied by a constant, 8. It does not depend on
the distance between the particles.

(a) Write down the hamiltonian for this system.

(b) Assume that the spatial component of the system’s wavefunction
corresponds to its lowest energy state allowed by symmetry prin-
ciples. Find the energies and degeneracies of all the allowed states
in this case.

QMII-5 Consider scattering of a plane wave |k > off a potential with a char-
acteristic length a. It is know that the phase shifts §) for all spherical
partial waves are given by the expression

) (ka)t

0 = 4| o

SROEA R D

(a) Considering the p partial wave only, what is the ratio of differential
scattering cross section in the forward direction to that of the
backward direction?

(b) If the first resonance scattering is observed for the p-wave at cer-
tain energy, what would be the s-wave scatiering cross section at
this particular energy?

(c) What would be the total differential cross section if all partial
waves are included? Calculate the total scattering cross section
for ka = 1.
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EMII-1. A particle of mass m and Lorentz factor -y scatters off a particle of
equal mass that was initially stationary. The collision is elastic and the first
particle scatters off at an angle # relative to its initial direction of motion.
Determine the Lorentz factor v/ of this particle as a function of cosé and ~.

EMII-2. Axn undulator is a device for producing coherent electromagnetic
radiation from a beam of relativistic electrons (i.e., free electron laser). In
an undulator, a relativistic electron passes through a region with alternating
magnetic field direction. The alternating magnetic fleld causes the electron
to wiggle in the transverse direction, and thereby radiate.

Assume the magnetic field in the device varies sinusoidally in the y-
direction,

B = (0, Bycos(kz),0),

with the magnet spacing related to k. Let the electron’s velocity be primarily
along the z-direction but perturbed by the magnetic field,

7 = (u(t),0,v).

Here the (longitudinal) z-component is v = ¢ and is unaffected by the mag-
netic field at first order.

(a) In whatever frame you choose, use the equations of motion to express
the time dependence of the z and ¢ components of the four velocity.

(b) What is the solution for the time dependence of the Lorentz factor?

(c) In whatever frame you choose for the calculation, compute the total av-
erage radiated power from a single relativistic electron as seen in the
lab frame of the undulator.



EMII-3. A general expression for the spectral and angular distribution of
energy radiated from a relativistic electron is

2
dwdg 47r2c f di'fi x (7 x ) expliw(t’ - 7 - (') /<))

which 15 derived using the Lienard-Wiechart expression for the radiative part
of the electric field.

A neutral particle ke the Z° can decay into an electron-positron pair. If
the Z° is at rest when it decays, the pair of particles fly in opposite directions
but with equal speeds /3. :

Let the electron have velocity

Eem = (0,0, 4) for t'>0,
and thus have position vector
o (') = (0,0,¢0t)  for ¢ >0.

The positron’s velocity and position vector are similar but with the sign of
3 reversed. Let the observation direction be taken to be # = (sin#, 0, cos §).

(a) Calculate the appearance radiation for pair production.

(b) Consider the nonrelativistic limit of this result. What does the angular
dependence and (lowest) power of velocity in this limiting expression
suggest?

EMII-4. Recalling Faraday’s and Ampere’s laws for a medium with non-
trivial permittivity,

o 188
VxE = —‘EE}E‘, (1)
VxB = Z’*"'at . (2)

assume the presence of a transverse plane electromagnetic wave E = ﬁo exp(ég .
T — iwt). Let the permittivity be scalar and given by
w2

Eﬁl—m- (3)

(a) Derive the dispersion relation.

(b) Using the dispersion relation and assuming a real driving frequency w
with w > w, and w > v, calculate the damping distance (or e-folding
distance) for a plane wave propagating in this medium.



EMII-5. An electron of charge e and mass m moves in a circular orbit under
the Coulomb force produced by a proton. The average potential enenergy
< V(r) > is related to the total energy by £ =< V > /2. Suppose, as it
radiates, the electron continues to move on a circle.

2
‘ . . 2 2
(a) Show that the power radiated is given by —% = & ( £ ) :

3¢ | mr?

2

(b) Show that it takes the electron ¢ = ™t o hit the proton if it starts

4¢4
from an initial radius of 7;,. Assume you have never heard of quantum

mechanics.
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1. Determine the fraction of hydrogen atoms that are ionized at the center of the sun, assuming
ionization equilibrium, 7" = 15.8 million K, and n, = 6.4 x 10°! m™%. Does your result agree
with the fact that practically all of the sun’s hydrogen is ionized at the sun’s center? What
are reasons for any discrepancy? Suppose the star has twice the metal content of the sun.

Would the level of ionization in its center be higher or lower than in the center of the sun?
Why?



2. Approximate a white dwarf of mass M and radius R as a degenerate core surrounded by an
ideal gas atmosphere.

(a) Show that the atmospheric pressure as function of temperature is in general

B4macRG 12
P(T) = T 1/2!1?14/4
@) = (SEERE)

for mass/luminosity ratio T,

(b) From this expression, show that the temperature profile throughout this atmosphere
r< Ris



3. The figure below show a schematic of a (theorist’s) H-R diagram left blank except for the
Sull.

H-B Diagram
ME

Y o
w
5
B
% :
G W
N -
5
i ;s o

G 4 ’ --
YOOy TOGUE R
Surlmee Tomporsture

Figure 1: H-R diagram

(a) Sketch the main sequence in the diagram.

(b} Explain the procedure for comparing calculated luminosities and temperatures of stellar
models to the observable quantities (color-magnitude).

(¢} Assuming the mass-luminosity relationship on the main sequence is L oc M*9, derive
a relationship for lifetime on the main sequence under the assumption that all stars
have the same fraction of their H available for nuclear burning. Then draw a 4+ at the
location of a star with ~1/700 the lifetime of the sun.

(d) Draw a * at the location of a star that has 100 times smaller luminosity than the sun
and 10 times smaller radius.

(e) Draw an arrow showing the approximate direction the sun would move in the diagram
if it cooled without changing its radius.



4. Consider a planetary transit across the disk of another star,

(a) Using geometry and a relationship for limb darkening, plot the shape of the light curve.

(b) What is the transit duration of a Jupiter analog orbiting at 0.3 AU across the center of
the disk of a G2 main-sequence star? (Jupiter is 10x the diameter of the Earth.)

(c) What is the maximum eclipse depth in % visible wavelength light attenuation for b)?

(d) Assuming that the planet has temperature 900 K, what is the ratio of IR flux at 3
micron wavelength of the planet to star in b)?



5. BEstimate the duration of the helium burning phase of the sun (i.e. when it is on the horizontal
branch). Assume:

(a) Its luminosity on this branch will be 100 times higher than it is now.

(b) Each reaction fusing 3 helium nuclei into 1 carbon produces 1.8 x 107 J, which is 40%
the energy produced in the fusion of 4 hydrogenr to 1 helium.

(c) The sun will start helium burning with 10 % of a solar mass of helium, and will fuse
essentially all of it. Remember that each helium nucleus is about four times as massive
as a hydrogen nucleus (helium mass = 6.7 x 107 kg).

(d) Using these assumptions, how long will the Sun burn helium? You may give your answer
in years or in relation to the main sequence lifetime of the sun, but please indicate which
you mean.
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ASTROII-1. Equation of State of a Degenerate, Ideal Fermi Gas
Consider a completely degenerate, ideal electron gas.

a. Write down an expression for the electron number density n, in terms of the distribution

function in phase space. Solve it, yielding n. as a function of x = pg/me.c.

b. Assume that the mass density p is dominated by non-degenerate ions. Write down an

expression for p as a function of .

c. Write down an expression for the electron pressure F, in terms of the distribution
function. Solve it, yielding F, as a function of z.

d. Series expand P, in the relativistic limit. Keep only the leading term.

e. What then is the equation of state in the relativistic limit?

Iy (—% w2 g{w(l + 22)12(222/3 ~ 1) + Infz + (1 + 2*)¥?]}

JE1 + 2 Pa?de = H{z(1 + 22)Y2(1 4 227 ~ In[z + (1 + 22)Y/%)}



ASTROII-2. Chandrasekhar Limit

Consider a white dwarf of radius R consisting of N fermions.

a. Write down an approximate expression for the typical distance ¢ between fermions as a

function of N and R. Ignore factors of order unity.

b. Using this and the uncertainty principle, write down an approximate expression for the

typical momentum p of a fermion as a function of N and R. Ignore factors of order unity.

c. Using this, write down an approximate expression for the typical kinetic energy Exg of

a fermion in the relativistic limit as a function of V and R.

d. Write down an approximate expression for the typical gravitational potential energy
Epy of a fermion as a function of N and R. Keep in mind that although the pressure is

dominated by electrons, the mass is dominated by baryons. Ignore factors of order unity.

e. Write down an approximate expression for the typical total energy E of a fermion as a

function of N and R.

f. If NV is small, £ > 0 and can be minimized by increasing X until the fermions become
non-relativistic. If N is large, £ < 0 and can be minimized by decreasing R (i.e., the white
dwarf collapses). Consequently, determine an approximate expression for the largest value

of N that a white dwarf can have without collapsing. Evaluate it.

E=11x10"% ergs
¢=3.0x 10" cm s7*
G=67x10"%cm®gts?
mp = 1.7 x 102 g



ASTROII-3. White Dwarf Cooling

Congsider a carbon white dwarf of mass M and of interior temperature T' that is in excess

of the crystallization temperature.
a. Write down an expression for the thermal energy per ion as a function of 7'

b. Write down an expression for the total thermal energy of the white dwarf as a function

of T"and M.

¢. Using this, write down an expression for the luminosity L of the white dwarf as a function

of T and M.

d. Photon diffusion from the interior to the surface implies that:

L= (2 x 10%erg/s) (%) T2, (1
®

Using this, write down a differential equation for T as a function of time.

e. Solve it assuming that the initial temperature is much greater than 7. Write down an

expression for the age 7 of the white dwarf as a function of T

f. What is the interior temperature of a 0.65-My white dwarf of luminosity 10*! erg? What

is its age in years?

k=14 x 10716 erg K1
My = 1.Tx 107 g
Mg = 2.0 x 10% g



ASTROII-4. Photodissociation

Consider the photodissociation of *Fe before a Type II supernova:

a. Each %°Fe nucleus dissociates into 13 alpha particles and 4 neutrons. Write down an

expression relating their chemical potentials.

b. For a Maxwell-Boltzmann gas:

3/2 2

mskd i — T
= g LRSSy B 2
=g ( orh? ) P ( kT ) 2)

where gp. &~ 1.4, g, = 1, and g, = 2. Write down the Saha equation, where:

Q = (13my + 4m, — mp,)c? = 124.4MeV. (3)

c. Assuming that ®9Fe is the most abundant heavy nucleus, write down an expression

relating n, and n,.

d. Using this, write down an expression relating the mass density p and the temperature T°

when half of the mass has been dissociated.
e. What is the mass density at which this occurs if kT = 1 MeV (= 1.6 x 107 erg)?

me=17x10"# g
Fo=1.1x 107" erg s



ASTROII-5. Relativistic Beaming

Consider the jet of a very low-redshift (» < 1} gamma-ray burst. Assume that its bulk

Lorentz factor as a function of observer-frame time is given by:

r- 100( d )mm )

1 min

a. Assume that the jet is 0.2 radians across, that it is not expanding laterally with time,
and that its center is pointed directly at us. At what observer-frame time, in hours, will the

jet begin to fade in brightness more quickly?

b. At what observer-frame time would this occur if the same gamma-ray burst were at

redshift 6.37

c. Again assume that z < 1, but that the jet is not pointed directly at us. Assume that its
center is pointed 0.2 radians away from us. At what observer-frame time, in hours, will the

jet begin to brighten?

d. Since this is much longer than the jet’s gamma-ray emitting phase, such events are likely
missed by gamma-ray spacecraft, but might be picked up as “orphan” afterglows in optical

surveys.

Suppose that in a 1-minute exposure you could detect regular afterglows typically for 1 hour,
but orphan afterglows typically only for 15 minutes, since they take a while to brighten.
Also assume that to this detection limit, one orphan afterglow appears (somewhere) in
the sky every day. If your field of view is a large 1 square degree and you take l-minute
exposures for 10 hours each night, how many nights will it take you to detect an orphan

afterglow?



