Primordial black holes and ultradense halos M. Sten Delos Max Planck Institute for Astrophysics

> Seminar – UCLA May 10, 2023

### Outline

**Primordial perturbations** 

Primordial black holes

**Dark matter halos** 

Ultradense halos forming during the radiation epoch

Growth and evolution of the smallest halos

#### Outline

**Primordial perturbations** 

Primordial black holes

**Dark matter halos** 

Ultradense halos forming during the radiation epoch

Growth and evolution of the smallest halos

## **Cosmic history**



## Growth of perturbations



## **Primordial perturbations**

Superhorizon (primordial) perturbations are tightly constrained **only at large scales**:



## Matter perturbations

Consider a power-law primordial power spectrum that is consistent with CMB measurements



### Outline

**Primordial perturbations** 

**Primordial black holes** 

**Dark matter halos** 

Ultradense halos forming during the radiation epoch

Growth and evolution of the smallest halos

## Primordial black holes



## Primordial black holes

Only the most extreme initial density excesses produce PBHs [otherwise PBHs would be overproduced]



## Constraints on primordial black holes

PBHs could be detected through their lensing, dynamical, or accretion signatures. Low-mass PBHs could be detected through their evaporation. Perturbations of sufficient amplitude to produce PBHs would also produce other signatures.

PBHs in a narrow mass range probably cannot comprise all of the dark matter [except in the asteroid-mass window]



## Primordial black holes and dark matter halos

If PBHs are not all of the dark matter, then the same perturbation spectrum that produces PBHs **also produces many more dark matter halos** 



The halos consist of particle dark matter (or much smaller PBHs)

### Outline

**Primordial perturbations** 

Primordial black holes

**Dark matter halos** 

Ultradense halos forming during the radiation epoch

Growth and evolution of the smallest halos

## Dark matter halos

- There is  $\sim 5$  times more dark matter than baryons
- Dark matter drives gravitational structure formation

Regions with excess density collapse under gravity to form hot clouds of dark matter

[Unlike visible matter, DM is essentially collisionless and cannot cool]



## Dark matter halos

- There is  $\sim 5$  times more dark matter than baryons
- Dark matter drives gravitational structure formation



MW mass model: Cautun et al (2020) picture of simulated MW-like galaxy: Grand et al (2021)

## Dark matter halos

#### Subhalos persist inside other halos:



#### Halos form at all scales:



## Halo density profiles

 $\rho(r)$ : shallow (logarithmic) decrease at small r, steep decrease at large r



# Density profile from accretion history

Density profiles are linked to accretion histories



## Density profile from accretion history



Thus, accretion history  $\simeq$  density profile

## Density profile from accretion history

Key point: within a halo,



# Thus, earlier halo formation $\rightarrow$ halos of higher internal density

### Outline

**Primordial perturbations** 

Primordial black holes

**Dark matter halos** 

Ultradense halos forming during the radiation epoch

Growth and evolution of the smallest halos

## Early halo formation



M. Sten Delos

## Early halo formation



23

## Halo formation during the radiation epoch

No peculiar gravitational forces where radiation dominates, only DM particle drift from initial conditions [horizon-entry kick].



## Halo formation during the radiation epoch

No peculiar gravitational forces where radiation dominates, only DM particle drift from initial conditions [horizon-entry kick].



## Halo formation during the radiation epoch

Halo forms around  $a \sim 10^{-5}$  even if collapse occurs earlier.

Earlier collapse simply overshoots.



## Primordial black holes and ultradense halos

PBHs require  $\mathcal{O}(1)$  perturbations.

Much lower perturbations can still collapse during the radiation epoch.



M. Sten Delos

## Primordial black holes and ultradense halos

The same perturbation spectrum that produces PBHs also produces many more lower-amplitude perturbations that are still sufficient to collapse during the radiation epoch



## Primordial black holes and ultradense halos



## Lensing of ultradense halos

Can halos forming during radiation domination be dense enough to be detected with microlensing?



Need to know  $\rho_{\rm halo}$  (~  $10^{12} {\rm M}_{\odot} {\rm pc}^{-3}$ ) more precisely [simulations?]

## Other microhalo probes

**Pulsar timing**: Doppler shift due to passing halos **Caustic crossing events**: Distortions in the light curve of a star crossing a lens caustic



### Outline

**Primordial perturbations** 

Primordial black holes

**Dark matter halos** 

Ultradense halos forming during the radiation epoch

**Growth and evolution of the smallest halos** 

## Ultradense halos today



Evaluated at  $a = 10^{-5}$ . How is this representative of the present-day distribution?

## Microhalos from amplified small-scale power





## Microhalos from amplified small-scale power





## Halo growth history

Consider the mean density excess  $\overline{\delta}$  enclosed within radius r about a density peak in the initial conditions

 $\longrightarrow$  mass M

**Rotate the picture**: Halo mass M as a function of scale factor  $a \sim \delta_c / \overline{\delta}$ 



## Halo growth history

Model works well for halo populations Plot: median and 68% band Simulation statistics: 200 to 35000 halos Model:

1000 random  $\overline{\delta}(r)$  samples



(arbitrary units and scale factor reference)

## Halo growth history

simulation simulation model model  $10^5$ mass M $10^3$  $10^{1}$  $10^{-1}$ simulation simulation model model  $10^{5}$ mass M $10^3$  $10^{1}$  $10^{-1}$  $10^{0}$  $10^{0}$  $10^{1}$  $10^{1}$ scale factor ascale factor a

Individual halos

(arbitrary units and scale factor reference)

Model works reasonably well for individual halos

## Summary

If primordial black holes are only a fraction of the dark matter, they will be vastly outnumbered by ultradense halos that could form prior to the matter epoch.

These halos may be so internally dense  $(\sim 10^{12} M_{\odot} pc^{-3})$  that they can be detected with microlensing.

Growth of such halos into larger objects can be accurately and efficiently predicted using the statistics of random fields.

