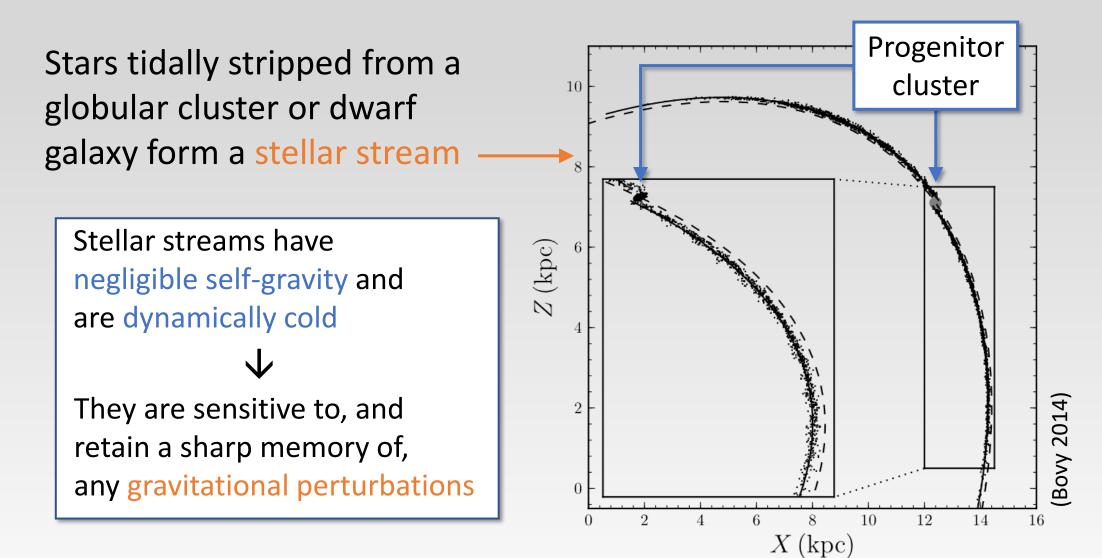
Stellar streams and dark substructure

M. Sten Delos with Fabian Schmidt

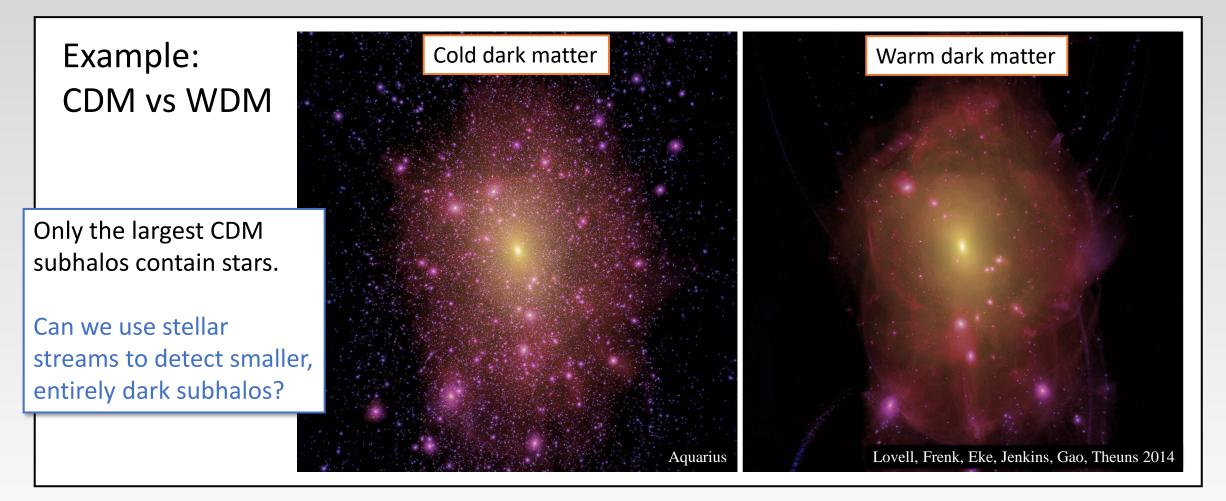
Munich Dark Matter Meeting 8 March 2022

Stellar streams



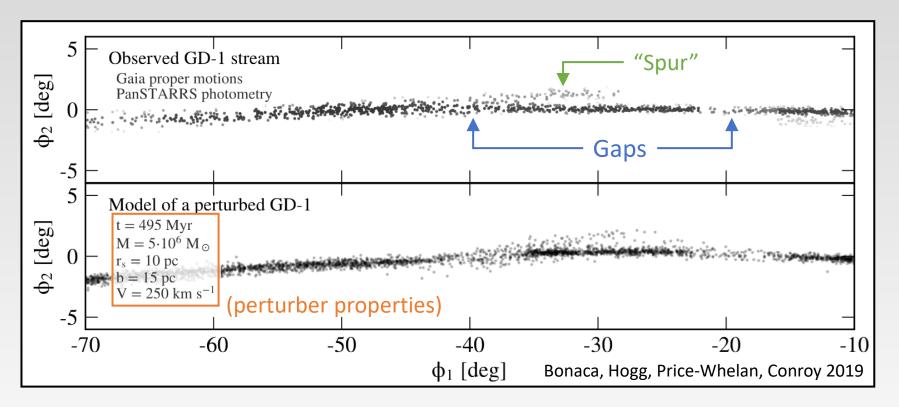
Dark matter substructure

Properties of dark matter substructure can probe the properties of dark matter.



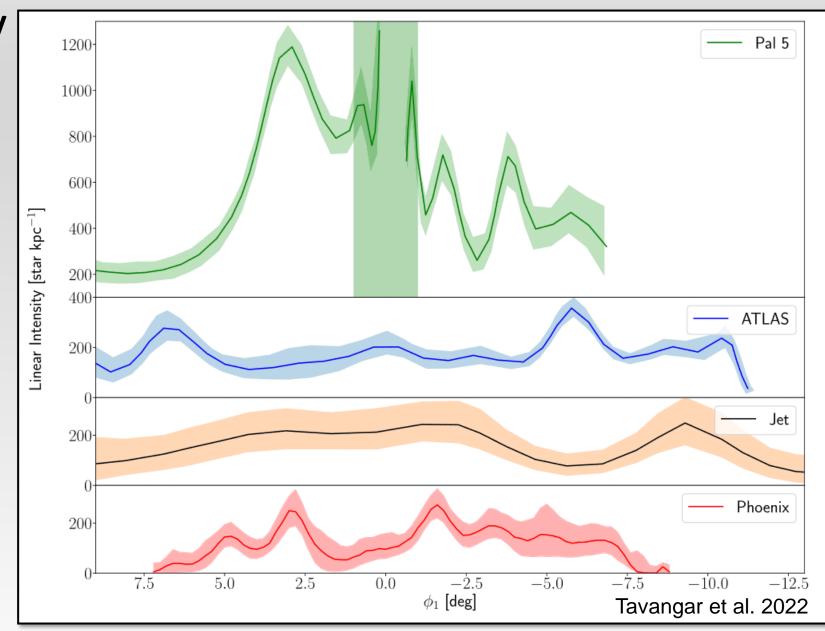
Evidence for substructure encounters

Features have been noted in stellar streams that may indicate past subhalo encounters.



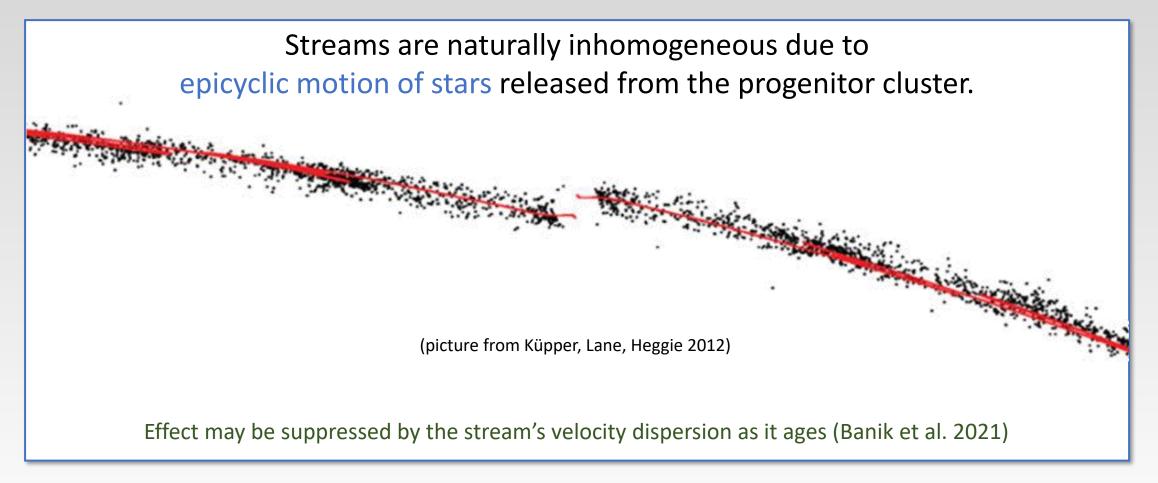
Stream density variations

Several other streams are also known to exhibit significant density variations:



Causes for stream density variations

Not necessarily an indication of dark matter substructure



Causes for stream density variations

Not necessarily an indication of dark matter substructure

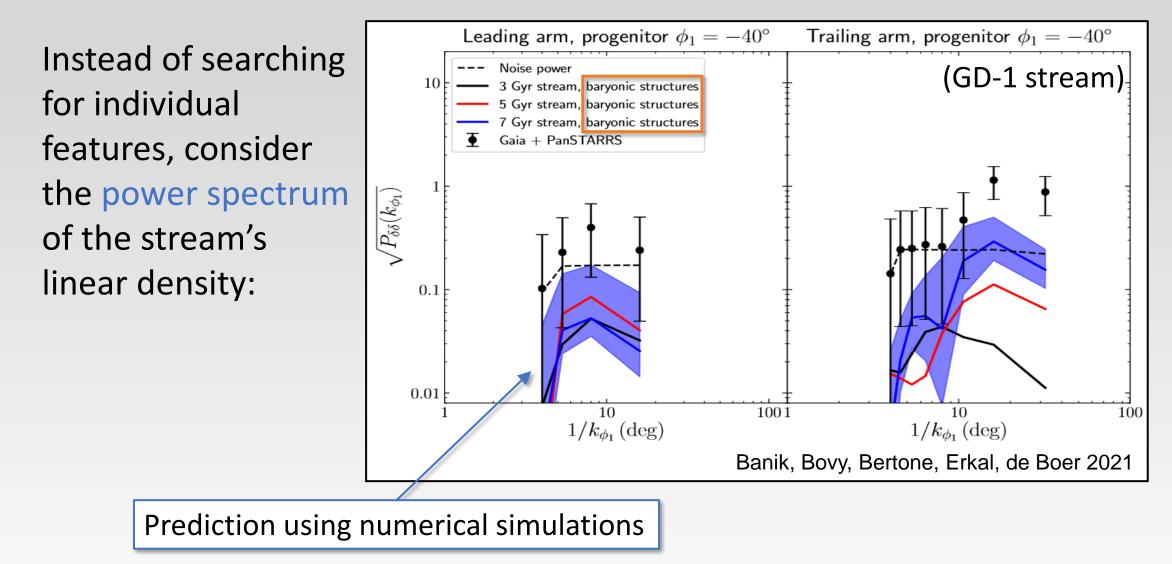
Stream could be perturbed by baryonic substructure:

- Milky way galaxy: bar and spiral arms
- Globular clusters and giant molecular clouds
- Satellite galaxies

[Particularly relevant if a stream's progenitor accreted together with its previous host: many low-speed encounters]

Impact of baryonic structures is suppressed for retrograde streams (like GD-1) due to faster encounters.

Stream power spectrum



Velocity-kick correlations

Idea: consider correlations between velocity kicks Δv at different positions.

Given a density field $\rho(\mathbf{x}) = \overline{\rho}\delta(\mathbf{x})$ moving at relative velocity \mathbf{u} , write $\Delta \mathbf{v}$ as an integral over Fourier space:

$$\Delta \boldsymbol{v}(\boldsymbol{r}) = \int \frac{\mathrm{d}^3 \boldsymbol{k}}{(2\pi)^3} \delta(\boldsymbol{k}) \mathrm{e}^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}} \boldsymbol{V}^*(\boldsymbol{k}|\boldsymbol{u},t)$$

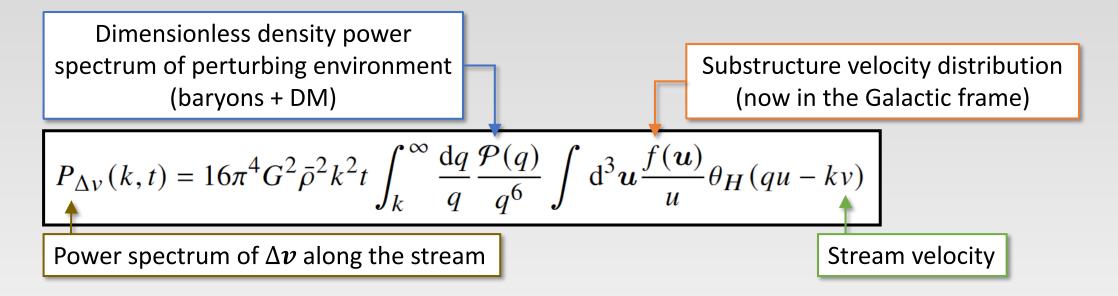
Depends on $\bar{\rho}$, \boldsymbol{k} , \boldsymbol{u} , and time t: $V(\boldsymbol{k}|\boldsymbol{u},t) \equiv 8\pi i G \bar{\rho} e^{i\boldsymbol{k}\cdot\boldsymbol{u}t/2} \frac{\sin(\boldsymbol{k}\cdot\boldsymbol{u}t/2)}{\boldsymbol{k}\cdot\boldsymbol{u}} \frac{\boldsymbol{k}}{k^2}$

Then construct the power spectrum:

$$P_{\hat{\boldsymbol{a}}\hat{\boldsymbol{b}}}(k) \equiv \int_{-\infty}^{\infty} \mathrm{d}\boldsymbol{r} \,\mathrm{e}^{-\mathrm{i}\boldsymbol{k}\boldsymbol{r}} \langle \hat{\boldsymbol{a}} \cdot \Delta \boldsymbol{v}(0) \hat{\boldsymbol{b}} \cdot \Delta \boldsymbol{v}(\boldsymbol{r}) \rangle$$

Velocity-kick power spectrum

...after much work we obtain:



Important consequence: stream perturbations at scale konly arise from substructure at smaller scales q > k.

Response of the stream to $P_{\Delta v}(k)$

Approximate the stellar stream as a one-dimensional system with no self-gravity. Let f(x, v, t) be its DF.

Boltzmann equation:

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} = -C \frac{\partial f}{\partial v} + \frac{1}{2} D \frac{\partial^2 f}{\partial v^2}$$

(Fokker-Planck approximation)

Diffusion coefficients:

$$C(x,t) = \frac{\Delta v}{\Delta t}$$
 (injection rate of coherent velocities
$$D(x,t) = \frac{(\Delta v)^2}{\Delta t}$$
 (injection rate of random motion)
$$[\Delta v = \text{velocity kick per time } \Delta t]$$

Idea: relate $P_{\Delta v}(k)$ to the statistics of C(x, t) and D(x, t).

Perturbative treatment

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} = -C \frac{\partial f}{\partial v} + \frac{1}{2} D \frac{\partial^2 f}{\partial v^2}$$

• Expand
$$f(x, v, t) = f_0(v, t) + f_1(x, v, t)$$

• Assume $C(x, t) = \frac{\Delta v}{\Delta t}$ is perturbative
• Assume $D = \frac{(\Delta v)^2}{\Delta t}$ is spatially uniform (not ideal

Equation for spatial average:

$$\frac{\partial f_0}{\partial t} = \frac{1}{2} D \frac{\partial^2 f_0}{\partial v^2} \implies \sigma^2(t) = \sigma_0^2 + Dt$$

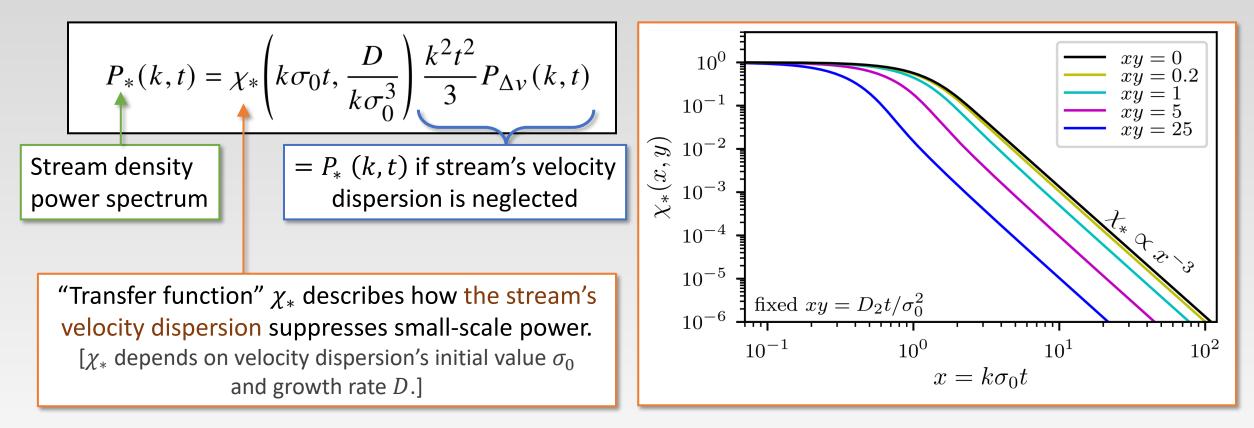
Equation for first-order perturbations (in Fourier space):

$$\frac{\partial f_1(k,v,t)}{\partial t} + ikvf_1(k,v,t) = -C(k,t)\frac{\partial f_0(v,t)}{\partial v} + \frac{1}{2}D\frac{\partial^2 f_1(k,v,t)}{\partial v^2}$$

- Solve for $f_1(k, v, t)$
- **Approach:** Integrate over velocities to obtain $\delta_*(k, t)$
 - Evaluate the correlation function $\langle \delta_*(k,t) \delta^*_*(k',t) \rangle$ to obtain $P_*(k,t)$

Small-scale suppression of stream power

...after much work we obtain:



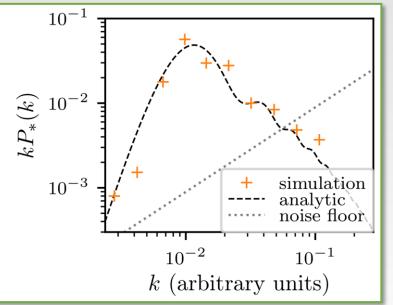
Toward a realistic stellar stream

We have the connection between stream power spectrum and perturber power spectrum!

$$P_{*}(k,t) = \chi_{*}\left(k\sigma_{0}t, \frac{D}{k\sigma_{0}^{3}}\right) \frac{k^{2}t^{2}}{3} P_{\Delta v}(k,t)$$
 (e.g., dark matter substructure)
$$P_{\Delta v}(k,t) = 16\pi^{4}G^{2}\bar{\rho}^{2}k^{2}t \int_{k}^{\infty} \frac{\mathrm{d}q}{q} \frac{\mathcal{P}(q)}{q^{6}} \int \mathrm{d}^{3}u \frac{f(u)}{u} \theta_{H}(qu-kv)$$

Analytic expressions were validated against idealized particle simulations:

- Start with a "stream" consisting of a periodic line of stars with some velocity dispersion
- Subject stars to random impulses due to passing Plummer spheres [which have an associated power spectrum]
- Compare stream power spectrum to analytic prediction



Toward a realistic stellar stream

We have the connection between stream power spectrum and perturber power spectrum!

$$P_{*}(k,t) = \chi_{*}\left(k\sigma_{0}t, \frac{D}{k\sigma_{0}^{3}}\right) \frac{k^{2}t^{2}}{3} P_{\Delta v}(k,t)$$

$$(e.g., dark matter substructure)$$

$$P_{\Delta v}(k,t) = 16\pi^{4}G^{2}\bar{\rho}^{2}k^{2}t \int_{k}^{\infty} \frac{\mathrm{d}q}{q} \frac{\mathcal{P}(q)}{q^{6}} \int \mathrm{d}^{3}u \frac{f(u)}{u} \theta_{H}(qu-kv)$$

...at least for our simplified picture.

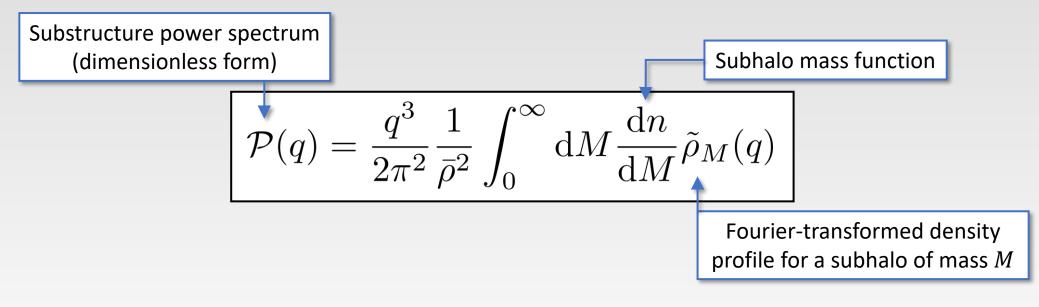
Practical complications

- Orbital dynamics: the connection between Δv and Δx (in the stream frame)
- Stream grows outward from, and is continuously sourced by, progenitor Can address at an approximate level

Substructure power spectrum from subhalos

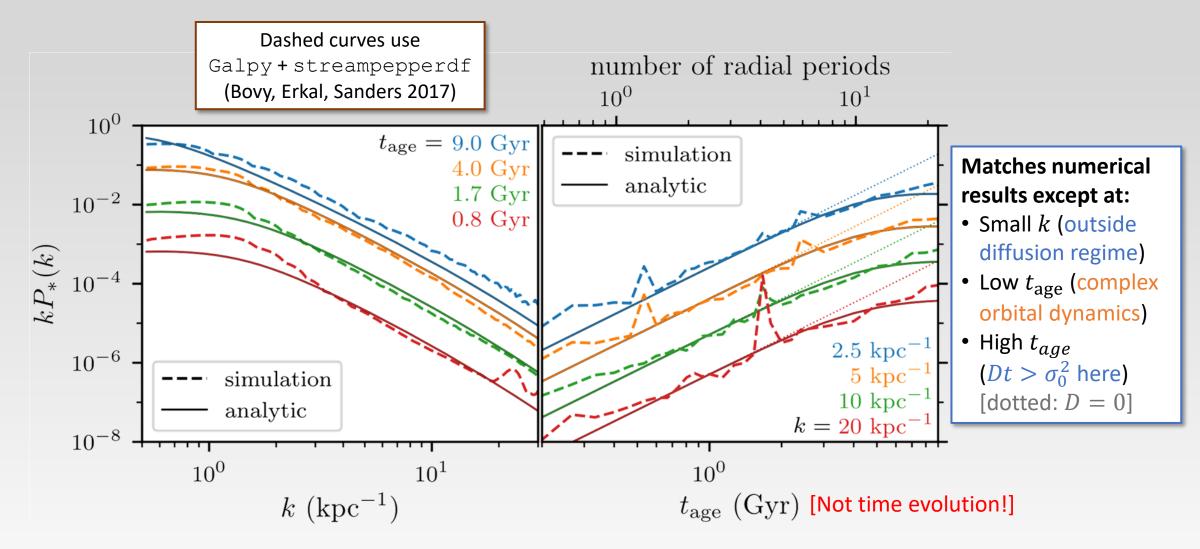
We now have stream power $P_*(k)$ as a function of substructure power $\mathcal{P}(q)$.

Other stellar stream treatments consider subhalo populations instead. These are related:



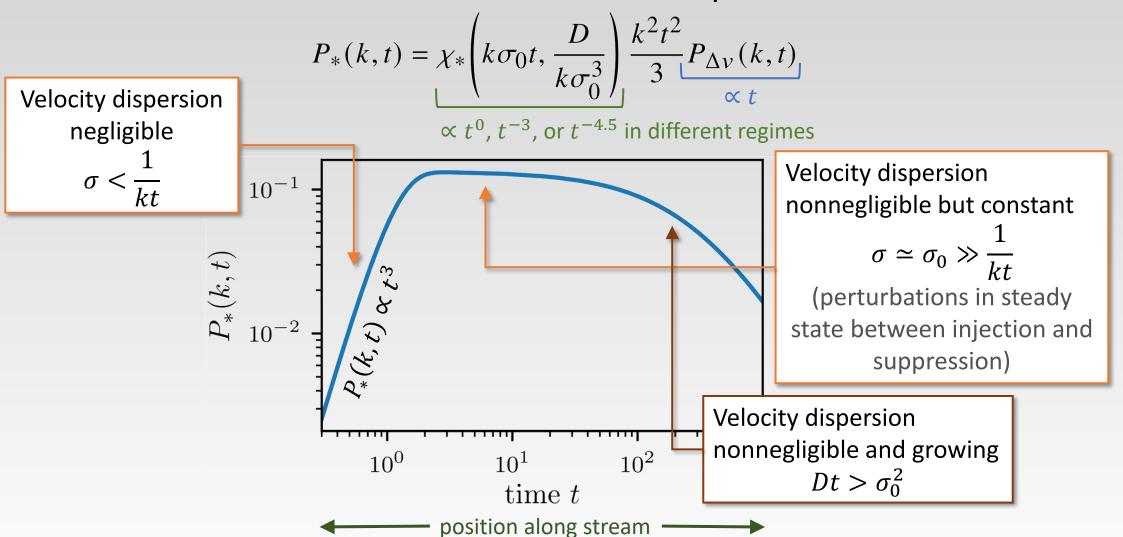
(we assume subhalo positions are uncorrelated)

Analytic prediction vs simulation

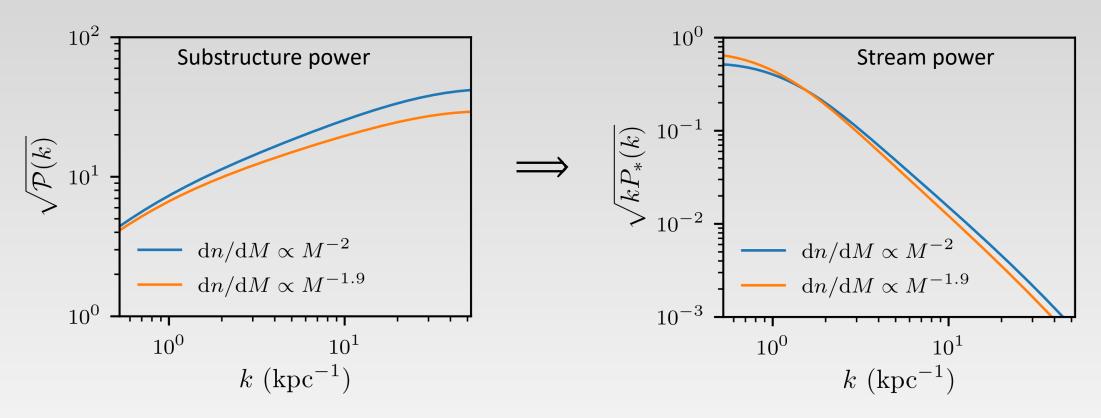


(We consider a model of the GD-1 stream perturbed by a simplified model of CDM substructure)

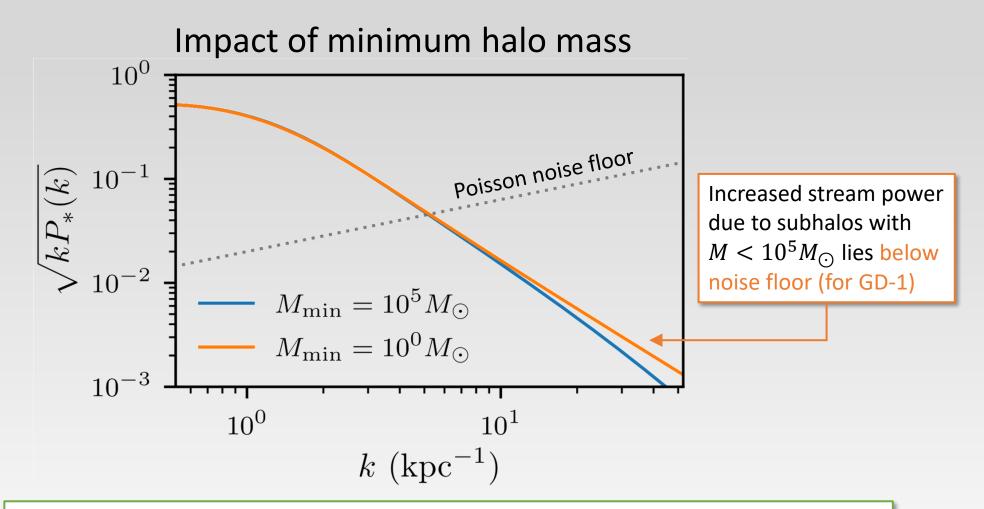
General time evolution of stream perturbations



Impact of subhalo mass function

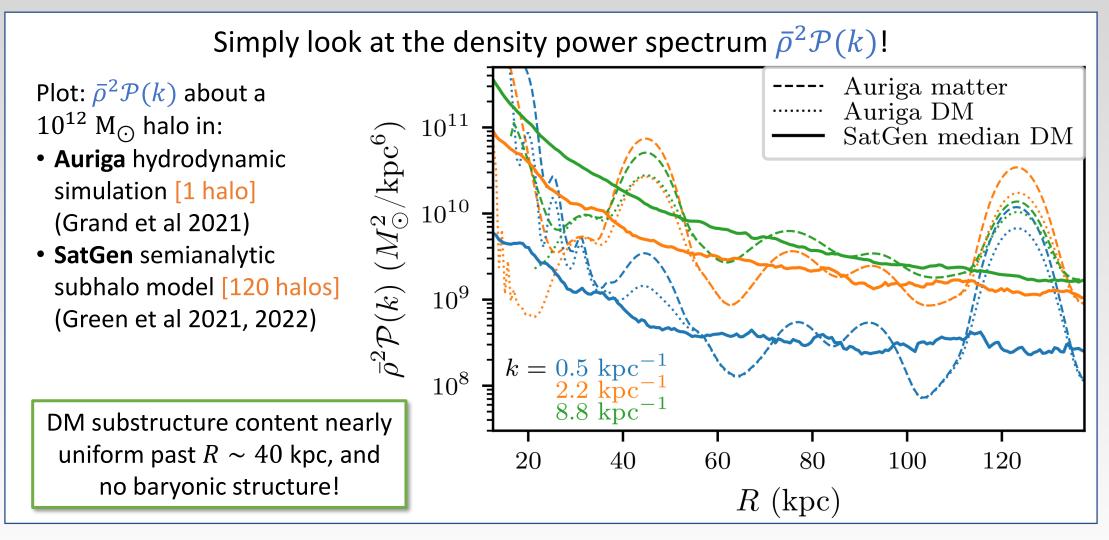


More small-scale substructure power \rightarrow more small-scale stream power (unsurprisingly) [Although greater induced velocity dispersion partially compensates]



Prospects are poor for probing halos below $10^5 M_{\odot}$ (at least with GD-1 density). But $10^5 M_{\odot}$ is still valuable!

Where to look for perturbed streams?



Summary

Stellar streams retain a sharp memory of past gravitational perturbations. Thus, they serve as a purely gravitational probe of dark matter.

> The power spectrum of a stellar stream's density can be analytically related to that of the substructure background:
> $$\begin{split} \hline P_*(k,t) &= \chi_* \left(k \sigma_0 t, \frac{D}{k \sigma_0^3} \right) \frac{k^2 t^2}{3} P_{\Delta \nu}(k,t) \\ \hline Stream power \\ P_{\Delta \nu}(k,t) &= 16 \pi^4 G^2 \bar{\rho}^2 k^2 t \int_k^\infty \frac{\mathrm{d}q}{q} \frac{\mathcal{P}(q)}{q^6} \int \mathrm{d}^3 u \frac{f(u)}{u} \theta_H(qu-kv) \end{split}$$

Our premise was to write Δv as a k-space integral over the perturber environment...

$$\Delta \boldsymbol{v}(\boldsymbol{r}) = \int \frac{\mathrm{d}^3 \boldsymbol{k}}{(2\pi)^3} \delta(\boldsymbol{k}) \mathrm{e}^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}} \boldsymbol{V}^*(\boldsymbol{k}|\boldsymbol{u},t), \quad \boldsymbol{V}(\boldsymbol{k}|\boldsymbol{u},t) \equiv 8\pi \mathrm{i}G\bar{\rho} \,\mathrm{e}^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{u}t/2} \frac{\mathrm{sin}(\boldsymbol{k}\cdot\boldsymbol{u}\,t/2)}{\boldsymbol{k}\cdot\boldsymbol{u}} \frac{\boldsymbol{k}}{k^2}$$

...and thereby relate the statistics of Δv to the environment's power spectrum.

This method may be applied to other dynamical probes of dark matter as well!