Prompt cusps of dark matter M. Sten Delos Carnegie Observatories Cosmology & Gravitation Seminar – Perimeter Institute October 10, 2023

Outline

Dark matter halos

The cosmological initial conditions and prompt cusps

Survival of prompt cusps

Prompt cusps and dark matter annihilation

Prompt cusps of warm dark matter

Outline

Dark matter halos

The cosmological initial conditions and prompt cusps

Survival of prompt cusps

Prompt cusps and dark matter annihilation

Prompt cusps of warm dark matter

Dark matter halos

- There is ~ 5 times more dark matter than baryons
- Dark matter drives gravitational structure formation

Regions with excess density collapse under gravity to form hot clouds of dark matter

[Unlike visible matter, DM is essentially collisionless and cannot cool]

Dark matter halos

- There is ~ 5 times more dark matter than baryons
- Dark matter drives gravitational structure formation

MW mass model: Cautun et al (2020) picture of simulated MW-like galaxy: Grand et al (2021)

Dark matter halos

Subhalos persist inside other halos:

Halos form at all scales:

Halo density profiles

 $\rho(r)$: shallow (logarithmic) decrease at small r, steep decrease at large r

Density profiles from accretion history

Universal density profiles follow from universal accretion history

Outline

Dark matter halos

The cosmological initial conditions and prompt cusps

Survival of prompt cusps

Prompt cusps and dark matter annihilation

Prompt cusps of warm dark matter

The cosmological initial conditions

A random density field

- Expanding over time
- Gravitationally amplified over time

The cosmological initial conditions

A random density field

- Expanding over time
- Gravitationally amplified over time

Smooth on sufficiently small scales

e.g., due to thermal motion of the dark matter

Local maxima in the density field are the first places to gravitationally collapse

Collapse at a density maximum

"Prompt cusp"

What sets prompt cusp properties?

Peak-cusp connection

M. Sten Delos

MSD & White (2023); MSD, Bruff, Erickcek (2019)

Peak-cusp connection

Twelve high-resolution halos from three power spectra:

Predictions [black] work well!

Statistics of peaks

Connection between cusps and peaks is clear. What is the distribution of peaks?

THE STATISTICS OF PEAKS OF GAUSSIAN RANDOM FIELDS

J. M. BARDEEN¹ Physics Department, University of Washington

J. R. BOND¹ Physics Department, Stanford University

N. KAISER¹ Astronomy Department, University of California at Berkeley, and Institute of Astronomy, Cambridge University

AND

A. S. SZALAY¹ Astrophysics Group, Fermilab Received 1985 July 25; accepted 1985 October 9

Statistics of prompt cusps

Example: 100 GeV WIMP (decoupling at 30 MeV)

Central cores

What about the influence of the dark matter's thermal motion?

Conservation of phase-space density \rightarrow finite-density core at small radii

Outline

Dark matter halos

The cosmological initial conditions and prompt cusps

Survival of prompt cusps

Prompt cusps and dark matter annihilation

Prompt cusps of warm dark matter

Do prompt cusps survive halo growth?

What happens to this object over a much longer time period?

Outcome: standard DM halo density profile + prompt cusp

M. Sten Delos

Prompt cusp survival

Twelve high-resolution halos from three cosmologies:

Prompt cusp forms at collapse; no evidence for disruption

Prompt cusp persistence is natural

Consequence: every (sub)halo has a central prompt cusp!

Can all peaks be associated with prompt cusps?

Prompt cusps survive halo growth. But do they survive halo clustering?

M. Sten Delos

 $\sim 1/2$ of collapsed peaks can be associated with prompt cusps

Outline

Dark matter halos

The cosmological initial conditions and prompt cusps

Survival of prompt cusps

Prompt cusps and dark matter annihilation

Prompt cusps of warm dark matter

What is dark matter?

Well motivated possibility: thermal relic dark matter particle χ , pair-produced in the early universe.

Thermal relic cross section: $\langle \sigma v \rangle \simeq 3 \times 10^{-26} \text{ cm}^3/\text{s}$

Indirect detection

Substructure boost

The annihilation rate inside a halo is boosted by the presence of subhalos

(due to ho^2 scaling)

Annihilation in prompt cusps

Abundance and internal density of prompt cusps greatly boost the annihilation rate

Same DM model as earlier: $m_\chi = 100$ GeV, $T_{
m kd} = 30$ MeV

Annihilation in prompt cusps

Annihilation in prompt cusps

Galactic cusps suppressed by tidal forces & stellar encounters per Stücker et al. (2023)

Limits on dark matter annihilation

based on prompt cusp contribution to the isotropic γ -ray background

Outline

Dark matter halos

The cosmological initial conditions and prompt cusps

Survival of prompt cusps

Prompt cusps and dark matter annihilation

Prompt cusps of warm dark matter

Warm dark matter

Random particle motion smooths initial conditions

which suppresses the abundance of low-mass halos:

M. Sten Delos

Prompt cusps of warm dark matter

Searching for WDM prompt cusps

We can search for prompt cusps within nearby dwarf galaxies:

Interpretation: $\rho > \rho_{cusp}$ can be explained by halo growth, but $\rho < \rho_{cusp}$ is difficult to explain

Better constraints come from ultrafaints...

WDM prompt cusps

Comparison to kinematics of Local Group dwarf galaxies $[v_{circ} \text{ at half-light radius}]$

- $v_{\rm circ}$ too high: can be explained by halo growth
- $v_{\rm circ}$ too low: difficult to explain

Summary

Gravitational collapse of smooth peaks in the initial density field produces prompt $\rho \propto r^{-1.5}$ cusps, which persist through halo growth.

- These features greatly impact DM annihilation. We expect an annihilation signal not only from the densest regions but from diffuse regions as well.
 [If Galactic Center γ-ray excess is DM annihilation, a matching signal should appear in the isotropic γ-ray
- background.]
 If DM is warm, prompt cusps should affect galactic kinematics and potentially other observables.

