# Constraining the primordial power spectrum using minihalos

Sten Delos (UNC-Chapel Hill)

Adrienne Erickcek (UNC-Chapel Hill) Avery Bailey (Princeton University, UNC-Chapel Hill) Marcelo Alvarez (UC Berkeley)



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



#### The primordial power spectrum



## Ultracompact minihalos

- Large density contrasts ( $\delta_{\rm hor} \gtrsim 10^{-3}$ ) form halos early
- Halo density ∝ background density at formation
- Nondetection  $\rightarrow$  constraints on primordial power
- $z \sim 1000$  formation  $\rightarrow$  small velocity dispersion

 $\rightarrow$  radial infall

- $\rho(r) \propto r^{-9/4}$  from analytic theory\*
- Steep, "ultracompact" profile enhances signals





#### The primordial power spectrum



## Ultracompact minihalos



### Simulating a natural formation scenario



- Study extreme halos ( $\delta \simeq 7\sigma$ ) forming at  $z \simeq 1000$  in spiked power spectrum
- Study similar halo in flat spectrum



Delos+ 2018

# Density profile

- Spiked power spectrum  $\rightarrow$  Moore\* profile ( $\rho \propto r^{-3/2}$  for small r)
  - Density profile stable in time
  - Scaling relations:

 $\rho_s \simeq 30 \times \text{(cosmological density at formation)}$   $r_s \simeq 0.7 \times \text{(physical scale of spike at formation)}$ Use to calculate observational signature!

• Scale-invariant spectrum  $\rightarrow$  NFW profile ( $\rho \propto r^{-1}$  for small r)



### Consequences

- UCMHs have Moore or NFW profiles
  - Pure power law requires special initial conditions
- Weaker observational signals
- Many more halos



## Constraining a $\delta$ -spike $\mathcal{P}(k) = \mathcal{A}_s k_s \delta(k - k_s)$

- Calculate UCMH gamma-ray signal from DM annihilation
  - Function of formation time and  $k_s$
- Signal nondetection (Fermi)  $\rightarrow$  abundance constraint  $\rightarrow$  power spectrum constraint



# Complications

- Spread in halo properties
  - Need more than formation time
- Halo mergers
  - Reduce halo count
  - Can boost central density\*
  - Push toward NFW profiles\* (~10× weaker signal)
  - Only matter for wider spike
- Halo survival
  - Disruption inside galactic halos



# Summary

- UCMH density profiles are shallower than previously assumed  $ho \propto r^{-3/2}$  or  $ho \propto r^{-1}$  at small r
- New theory can account for all halos instead of just the rarest
- Crude calculations suggest corrected UCMHs may possess more constraining power
- Work is still needed to fully account for halo statistics and evolution

Further detail:

Phys. Rev. D 97, 041303(R) [arXiv:1712.05421] and forthcoming work



## Supplemental

Flat power spectrum results



