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ABSTRACT

M. Sten Delos: Probing the Early Universe Using Dark Matter Minihalos
(Under the direction of Adrienne L. Erickcek)

Through their observable properties, the first and smallest dark matter halos represent a rare

probe of subkiloparsec-scale variations in the density of the early Universe. These density variations

could hold clues to the nature of inflation, the postinflationary cosmic history, and the identity

of dark matter. However, the dynamical complexity of these minihalos hinders their usage as

cosmological probes. A theoretical understanding of the minihalo-cosmology connection demands

numerical simulation, but minihalos are too small and dense to simulate up to the present day

in full cosmological context. This dissertation meets this challenge by using controlled numerical

simulations to develop (semi)analytic models of dark matter structure. These models describe the

formation of the first halos and their subsequent evolution as they accrete onto larger systems, both

through tidal forces and encounters with other objects. I also explore two observational applications

of the minihalo-cosmology connection: breaking a degeneracy between the properties of thermal-relic

dark matter and the postinflationary history, and probing inflation’s late stages via the small-scale

primordial power spectrum.
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CHAPTER 1:
INTRODUCTION

1.1 Cosmic history

The Universe as we know it is believed to have begun with a period of accelerated expansion

called inflation [1–3]. During inflation, tiny quantum fluctuations in the energy density rapidly

expanded beyond the cosmological horizon, becoming frozen due to lack of causal contact. Through

this process, initially minor variations in the density of the Universe were seeded [4]. After inflation,

the Universe became dominated by relativistic particles—radiation—which gradually cooled as

the Universe continued to expand. After about 52 000 years [5], the radiation cooled enough that

its energy density fell below that of nonrelativistic particles, and the Universe entered a period

of matter domination. Subsequently, the density variations that inflation seeded grew through

gravitational attraction, as regions with excess density attracted surrounding matter to grow still

denser; this process eventually produced the vast network of galaxies that characterize the Universe

today. Figures 1.1 and 1.2 plot, respectively, the cosmic expansion history and the evolution of the

energy density of the Universe. Figure 1.3 shows a timeline of major cosmic events.

While this broad picture is consistent with observations, its details remain uncertain. The

Universe was opaque during the first 380 000 years [5], concealing this period from direct view.

Our earliest definitive constraints on cosmic evolution come from the decoupling of neutrinos from

the thermal plasma, a process that occurred at a time of about 1 second. The details of neutrino

decoupling influence Big Bang nucleosynthesis (BBN)—the process that created the first nuclei

heavier than hydrogen—and the evolution of cosmic density variations. Consequently, observationally

inferred light-element abundances [6–9] and density variations [10, 11] demand that the Universe

was radiation dominated as early as a time of about 0.1 seconds (corresponding to a temperature of

3 MeV).

The preceding inflationary epoch is invoked to solve the horizon and flatness problems [1–3] and

to explain the presence of primordial density variations (see Ref. [4] for a review). However, we have
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Figure 1.1: The known cosmic expansion history. The scale factor a—the size of the Universe relative
to its size today—is plotted against time, starting at 1 second. When radiation dominates (red), the
Universe grows with time t as a ∝ t1/2, while when matter dominates (gray), a ∝ t2/3. Dark energy
is just beginning to dominate (blue) today; during both dark energy domination and inflation (not
pictured), the scale factor grows exponentially in time.

Dark energy

Figure 1.2: Evolution of the energy density ρ of the Universe, relative to the density today, as a
function of the scale factor a (see Fig. 1.1). The density of (nonrelativistic) matter drops as ρ ∝ a−3

due to the expansion of the volume it occupies. Radiation additionally redshifts, so its energy density
drops more quickly as ρ ∝ a−4. Consequently, radiation domination (red shading) eventually gives
way to matter domination (gray). Dark energy’s density is constant, and it is just beginning to
dominate (blue shading) today (a = 1).
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Figure 1.3: A schematic cosmic history. The Universe was opaque during the first 380 000 years,
concealing this period from direct view, but indirect evidence, such as the observed abundances of
the light elements deuterium, helium, and lithium, still constrains cosmic evolution during this time.
However, the first second is largely unprobed (red arrows).

little observational guidance as to inflation’s physical details, and the primordial density variations

represent one of its few lasting imprints. Primordial fluctuations are observed to obey Gaussian

statistics [12], allowing them to be solely described by a power spectrum P(k) quantifying the

power contained in these fluctuations as a function of scale wavenumber1 k. Fluctuations manifest

themselves in the cosmic microwave background (CMB), light that last scattered the moment the

Universe became transparent, so CMB has been employed to precisely measure the primordial power

spectrum at scales above about 10 Mpc (e.g., Ref. [13]). Galaxy surveys largely confirm these

measurements (e.g., Ref. [14]). P(k) has also been measured down to Mpc-scale wavelengths using

the Lyman-α forest (e.g., Ref. [15]), the absorption lines in light from distant sources that, due

to cosmological redshifting, mark the locations of hydrogen clouds. All of these observations are

consistent with a weak power law P(k) ∝ kns−1 with ns = 0.9667± 0.0040 [16]; see Fig. 1.4. This

nearly scale-invariant spectrum is consistent with the predictions of the simplest models of inflation.

However, the scales 10−4 Mpc−1 . k . 3 Mpc−1 that current observations measure correspond

to only a small fraction of inflation’s full dynamical trajectory. At smaller scales, which correspond

to the later stages of inflation, Fig. 1.4 shows that only upper bounds on P(k) are accessible. Many

inflationary models yield primordial curvature spectra that depart from scale invariance at small

scales. Spectral features can arise through features in the potential of the inflaton field [27–37]—the

field driving inflation—or through multiple episodes of inflation [38–40]. Features can also arise

through interactions between the inflaton and other fields [41–48], such as energy transfer [49–52]

1k ≡ 2π/λ, where λ denotes wavelength.
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Figure 1.4: Observational constraints on primordial density variations, quantified by the power
spectrum Pζ(k) of curvature fluctuations. Shaded and hatched (“//” or “\\”) regions are ruled
out by various observational tests, while dashed lines represent prospective constraints from future
experiments. The CMB and the Lyman-α forest precisely measure P(k) at large scales [13, 15], and
future measurements of the 21cm signal from neutral hydrogen promise to extend these constraints
down to scales of order 10 kpc [17, 18]. At yet smaller scales, upper bounds on P(k) are derived
from observational limits on distortions to the CMB spectrum [19], stochastic gravitational waves
[20], and primordial black holes (PBHs) [21], and from the observed abundance of primordial helium
[22]. Stronger bounds can be obtained by searching for dark matter microstructure using transient
distortions within strongly lensed systems [23, 24], pulsar timing arrays [25], and dark matter
annihilation [26]. Whereas shaded constraints are based on analytic perturbation theory, hatched
constraints are based on uncertain models of nonlinear cosmic structure. Forward-hatched (“//”)
constraints, in particular, use models of small-scale dark matter structure, and question marks (“???”)
indicate prospective minihalo-based probes the forecasts for which have not yet been derived. To
bolster the precision and robustness of these minihalo-based bounds, the research described in this
dissertation aims to develop a precise understanding of the connection between primordial power
and the smallest dark matter halos.
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and nontrivial inflaton field trajectories [53–68], and from particular inflationary models such as

axion-driven inflation [69, 70], running-mass inflation [71, 72], waterfall inflation [73–76], and others

[77–83]. Additionally, alternatives to the inflationary picture have been widely considered [84–112],

including cyclic-Universe models [113–135], and these theories leave their own imprints on the power

spectrum of primordial fluctuations.

After inflation, relativistic Standard Model particles eventually come to dominate the energy

density of the Universe. However, the energy scale associated with inflation could be as high as

1016 GeV [136, 137], and the absence of evidence from the Large Hadron Collider for physics beyond

the Standard Model of particle physics (e.g., Refs. [138–144]) suggests that inflation’s energy scale at

least lies well beyond the 13-TeV energy scale that this particle collider probes. These energies are far

higher than the highest temperature—3 MeV—at which radiation dominance has been observationally

confirmed [6–11], and the Universe’s evolution as it cooled through the vast temperature range

between inflation and MeV scales remains completely unprobed. There is little reason to assume the

Universe was radiation dominated during this full period (see Ref. [145] for a review of proposed

dynamics). Since the energy density of radiation decreases more rapidly than that of nonrelativistic

particles, any heavy field left over from the inflationary epoch would naturally come to dominate

the energy density of the Universe, leading to an early matter-dominated era (EMDE). The early

matter field is only observationally required to decay into radiation before the onset of neutrino

decoupling at a time of about 0.1 seconds. Figure 1.5 depicts the density evolution in this scenario.

Well motivated examples of such heavy fields include hidden-sector particles [146–158], moduli fields

in string theory [159–166], and certain spectator fields invoked to generate primordial curvature

variations during inflation [167–170]. After inflation ends, the inflaton itself can also behave as a

pressureless fluid before its decay [171–180].

Like many of the aforementioned inflationary models, early matter domination also leaves a

characteristic imprint on small-scale density variations. During an EMDE, the gravitational clustering

of the dominant heavy particles boosts the growth rate of density perturbations that are inside the

cosmological horizon, as shown in Fig. 1.6. Consequently, an EMDE can greatly amplify small-scale

density variations [181–183]. Aside from early matter domination, another possibility—domination

by a fast-rolling scalar field (e.g., Refs. [184–190])—also boosts small-scale density variations [191].
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Figure 1.5: Density evolution that gives rise to an early matter-dominated era. An early matter
species (green curve) dominates at early times (green shading), but it is unstable and decays into
radiation (orange line). Radiation quickly comes to dominate (orange shading) and is eventually
supplanted by stable matter (black; c.f. Fig. 1.2).
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Figure 1.6: Growth of subhorizon density perturbations during and after early matter domination.
Fractional density contrasts δ ≡ δρ/ρ̄ grow proportionally to the growth function D(a), plotted,
as long as δ � 1. During the EMDE (green), as during the last matter-dominated epoch (gray),
density perturbations grow rapidly because the dominant species clusters. Since radiation does not
cluster, perturbations grow much more slowly when radiation dominates (orange). Consequently, a
early matter-dominated cosmology features greatly boosted small-scale density variations relative to
if radiation dominated during the same period.
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1.2 Dark matter minihalos as cosmological probes

In these ways, small-scale density variations could hold the answers to key questions about the

early Universe and represent a promising probe of physics beyond the Standard Model of particle

physics. In order to exploit this probe, we must extend our view of the primordial mass distribution

to subgalactic scales. Variations in the density of ordinary (“baryonic”) matter were washed out at

these scales by complex processes, such as the diffusion of photons while the Universe was opaque

and energetic feedback from stars during structure formation. However, it has been well established

that ordinary matter accounts for only a small fraction of the Universe’s matter content (e.g.,

Refs. [16, 192, 193]). The rest of the matter is “dark”: it does not interact with light, so it is exposed

to fewer physical processes. Fluctuations that were erased in the ordinary matter are expected to

persist in this dark matter. While dark matter is difficult to directly observe, dark matter density

variations still manifest in detectable ways. Regions with excess density collapse to form highly

dense, gravitationally bound clouds of dark matter, or halos (see Ref. [194] for a review). Galaxies

lie at the centers of the largest halos, but sufficiently extreme small-scale density excesses could

form minihalos2 long before galaxies appear. Since they form during a much denser epoch, these

minihalos could be extraordinarily dense.

Despite dark matter’s invisibility, the high density within minihalos leads to observational

prospects. Dark matter is widely expected to have some interaction with ordinary (Standard Model)

particles in order for it to be produced in the first place (see Refs. [195–199] for reviews of dark

matter models). One of the best motivated explanations for dark matter’s observed abundance is

that it originated in matter-antimatter pairs within the early-Universe radiation bath. This pair

production would have originally been in equilibrium with dark matter annihilation—the reverse

process—but as the Universe expanded and cooled, both processes would have come to a halt and left

a relic abundance of dark matter. Figure 1.7 describes this freeze-out process in detail, but the key

consequence is that under this scenario, the dark matter would annihilate into detectable radiation

today at a rate that is drastically boosted by the high density inside minihalos. Independently of

the dark matter model, dense halos can also be detected through their gravitational signatures. For

2In this work, the terms “minihalo” and “microhalo” are interchangeable.
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example, while minihalos are too small to be detectable as gravitational lenses on their own, they can

produce detectable distortions within systems—distant quasars [23] or stars [24]—that are already

strongly lensed. Minihalos can also be detected by their transient gravitational influence on the

observed periods of pulsars [25], whether by passing near either the pulsar or the Earth (producing

a Doppler shift) or by crossing the line of sight to the pulsar (producing a Shapiro time delay).

Minihalos may also be detectable by their dynamical influence on cold astrophysical systems, such

as stellar streams [200, 201].

Through detection efforts, minihalos can therefore serve as messengers from the early Universe.

However, to employ them thus, we must establish the connection between minihalos’ observable

characteristics and properties of the small-scale density variations that preceded them, which

are set by the early-Universe cosmology. This doctoral dissertation represents a study of this

minihalo-cosmology connection and is organized as follows.

1.2.1 Ultracompact minihalos and probing inflation

Many previous works have used minihalos to place observational constraints on primordial

curvature variations, but my research described in Chapter 2 challenges prior results. It has been

commonly assumed, beginning with Ref. [202], that halos that form by the redshift3 z = 1000—when

the Universe was 430 000 years old and 1/1000 its present size—develop the unusually steep density

profile predicted by the analytic theory of Ref. [203]. This profile’s density ρ scales with radius r

as ρ ∝ r−9/4, and its compactness greatly boosts observational signals and has led to considerable

interest in these objects. Observational limits on the abundance of these so-called ultracompact

minihalos yielded the most stringent bounds on small-scale primordial density variations, which

in turn led to powerful and unrivaled constraints on inflationary models [204]. However, using

numerical simulations, Chapter 2 demonstrates exhaustively that the ρ ∝ r−9/4 profile does not arise

from a realistic formation scenario. Instead, the first halos universally develop shallower ρ ∝ r−3/2

density profiles at small radii. This profile is still steeper than the ρ ∝ r−1 profile that arises within

later-forming halos, such as those that surround galaxies [205].

This discovery significantly reduces the expected detectability of each minihalo, potentially

3z ≡ 1/a− 1, where a is the scale factor.
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Figure 1.7: A depiction of dark matter freeze-out for a dark matter particle with mass mχ = 100 GeV.
I plot the comoving energy density—that is, ρa3, the density per expanding volume of space—of
radiation (red) and dark matter (black) as a function of “time”. Here, time is parametrized by the
decreasing temperature of the radiation bath (bottom axis) or the increasing scale factor (top axis;
a = 1 today). The radiation density gradually decreases due to redshifting caused by cosmological
expansion. At early times (left), the dark matter particle is in equilibrium with the radiation bath;
pair production and annihilation balance so that the dark matter density tracks the radiation density.
Once the temperature T drops below the mass mχ = 100 GeV of the dark matter particle, pair
production becomes disfavored because the radiation particles (e.g., photons) do not carry sufficient
energy. At this point, the density of dark matter drops exponentially because annihilation is still
efficient. Eventually, however, the annihilation rate per dark matter particle, 〈σv〉nχ, drops below
the expansion rate H; put differently, the expected time for a given particle to find a partner with
which to annihilate becomes longer than the age of the Universe. Here, 〈σv〉 is the velocity-averaged
velocity-scaled cross section for dark matter annihilation, while nχ is the number density of dark
matter particles. At this point, the dark matter is said to freeze out : annihilation ceases and dark
matter’s comoving density stabilizes at the observed value of about 26% of the present-day energy
density ρ0.
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impairing the capacity of these objects to constrain primordial density variations. On the other hand,

it becomes no longer necessary to restrict an analysis to halos forming within the first 430 000 years,

so the pool of halos that can contribute to constraints grows dramatically. By using simulation-

tuned scaling arguments to relate minihalos to their precursor density excesses, Chapter 2 derives

new bounds on primordial density variations that account for all minihalos. I find that, rather

than being relaxed, constraints on density variations are tightened. The inclusion of all minihalos

compensates for the reduction in signal from each one. This unexpected finding represents a new set

of observational constraints that theories of inflation must satisfy.

1.2.2 Halo formation prior to matter domination, and probing hidden sectors

Sufficiently extreme density variations could collapse to form dark matter halos during the first

52 000 years, during which time the Universe was dominated by radiation instead of matter (see

Figure 1.3). For instance, in hidden-sector dark matter theories—where a heavy mediator particle

links dark matter to the Standard Model—the heavy mediator could drive an EMDE that amplifies

density variations in the dark matter dramatically [181–183]. Using numerical simulations that

account for the early presence of this short-lived heavy species, Chapter 3 studies halo formation

during the radiation-dominated epoch. Since radiation does not cluster like matter, radiation

dominance allows particles to drift freely without any net gravitational acceleration. Gravitationally

bound structures cannot form where radiation dominates. Nevertheless, Chapter 3 demonstrates that

localized regions can become matter dominated where freely drifting streams of dark matter converge.

Bound halos form within these regions long before radiation globally gives way to matter. Their early

formation would make these halos so dense—and hence so readily detectable—that observational

limits on their abundance severely constrain the hidden-sector theories that my collaborators and I

considered in Ref. [206].

1.2.3 Predicting the structures of dark matter halos

The observational constraints derived in Chapter 2 are based on simplifying approximations

regarding the relationship between a primordial mass distribution and the demographics of the halo

population that it forms. Motivated by the goal of precisely predicting minihalos’ observational

signals, Chapters 4–6 refine our understanding of this relationship. The small size and high internal

density of the smallest halos make it infeasible to simulate their full populations and lifetimes on

foreseeable hardware; in particular, the scale disparity between minihalos and the largest structures—
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potentially 20 orders of magnitude in mass—is far too great to represent within a simulation’s

resolution.4 Consequently, these chapters are devoted to the development of simulation-tuned

mathematical models. In order to connect minihalo properties today to primordial density variations,

these models characterize both the formation of minihalos and their subsequent evolution through

cosmic time.

Formation of the first halos Chapter 4 builds a framework that relates the internal structures

of the first halos to properties of the initial density variations that formed them. Compared to

other predictive models of halo populations, this framework is formulated more directly in terms

of physical principles (as opposed to simply fitting simulation results). Consequently, it is unique

in that its predictions are accurate across wildly disparate cosmological scenarios, so it spares the

need to simulate every possible cosmology. By exploiting the statistical properties of the primordial

mass distribution, this framework can rapidly characterize entire ensembles of minihalos, making it

a powerful tool for predicting their observational signals.

Evolution due to tidal forces After formation, the first generation of halos merge to create

successively larger structures, and Chapter 5 develops a model that predicts the evolution of small

subhalos inside much larger host halos. It is impractical to simulate a galactic-scale host halo

together with a minihalo due to the vast difference in scales, so this chapter employs idealized

simulations of N -body minihalos orbiting analytic hosts. Based on the results of these simulations,

I develop a novel way to parametrize how a subhalo evolves due to a host halo’s tidal forces; this

parametrization reduces the entire complicated host-subhalo system to only three relevant physical

parameters. Using this parametrization, Chapter 5 presents a model that predicts a subhalo’s

evolution with unparalleled accuracy.

Evolution due to stellar encounters Minihalos inside galactic systems are also affected by

encounters with individual stars. Chapter 6 uses numerical simulations to study how a halo responds

to such an encounter and finds that, under most circumstances, only a single physical parameter—the

energy that the encounter injects into halo particles—is relevant to the outcome. Using these

simulation results, I develop a model that can predict the structural evolution of a halo passing

4Except when objects of different scales are spatially segregated. That is, the smallest halos can be resolved only
where larger halos are absent (e.g., Ref. [207]).
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through a stellar field with remarkable precision. Models of this sort are particularly valuable in

treating the impact of stellar encounters because of their random nature. A simulation of this

scenario would need to be repeated with different random stellar samples, at enormous computational

expense. In contrast, the model described in Chapter 6 can characterize with minimal cost how

stellar encounters affect whole ensembles of minihalos.

1.2.4 Breaking a degeneracy between dark matter and the early Universe

Finally, Chapter 7 applies these models to a problem that involves both the early Universe and the

nature of dark matter. If dark matter originated in matter-antimatter pairs, then its microphysical

properties are constrained by the requirement that it achieve its observed abundance. Under

the standard assumption that radiation dominated the Universe when dark matter’s production

concluded, dark matter’s (velocity-scaled, velocity-averaged) annihilation cross section 〈σv〉 must

be close to the particular value 3 × 10−26 cm3/s [208]. This cross section presents an attainable

target for indirect-detection experiments that search for annihilation products, such as gamma rays,

sourced by nearby dark matter-rich dwarf galaxies [209–212]. However, a wide variety of dark matter

candidates would have been produced entirely during the first second, when there is no reason to

assume radiation was dominant. The possibility of an EMDE during this epoch vastly broadens

the range of viable dark matter candidates; almost any annihilation cross section smaller than

3 × 10−26 cm3/s is allowed [213–223]. Consequently, there is a degeneracy between dark matter

properties and the history of the early Universe; the former cannot be determined without knowledge

of the latter.

Fortunately, since early matter domination also amplifies small-scale density variations [181–183],

it leads to a population of highly dense dark matter minihalos, and the density within these objects

boosts the dark matter annihilation rate dramatically [206, 224, 225]. Chapter 7 uses the models

developed in Chapters 4–6 (with some new refinements) to characterize the gamma-ray signals

expected from the minihalo populations arising from this scenario. These minihalos are far too small

to resolve as individual gamma-ray sources and would instead register as a diffuse signal, and I

consider two complementary examples thereof:

(1) a background gamma-ray signal sourced by minihalos both within the Milky Way’s dark halo

and in the vast expanse outside our Galaxy;

(2) a directed gamma-ray signal sourced by minihalos within a particular dwarf galaxy; I pick the
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Draco dwarf for its optimal combination of proximity and high mass.

Chapter 7 compares the predicted gamma-ray signals with observational data from the Fermi

Gamma-ray Space Telescope.

The signal from Draco (or any galactic system) is valuable because it can discriminate between

different cosmological scenarios. Minihalos inside Draco suffer gradual disruption due to tidal forces

and stellar encounters, and these effects suppress the annihilation signal near the system’s center.

The magnitude of this suppressive effect is sensitive to the detailed demographics of the minihalos,

so measurements of the shape of a gamma-ray flux from Draco could be employed to probe these

demographics. Through my models, this procedure would in turn probe primordial density variations

and hence the Universe’s first second. It would also distinguish minihalo-dominated dark matter

annihilation from the decay of dark matter particles; the two unrelated processes produce almost

identical signals that are differentiated only by minihalos’ aforementioned central suppression.

However, absent a positive detection of dark matter-sourced gamma rays, the background signal

offers significantly more constraining power than the signal from Draco due to the sheer volume

sourcing the background. The precise strength of the dark matter constraints that Chapter 7 derives

using the background signal depend on further details of dark matter’s interactions with ordinary

matter. Nevertheless, for plausible sets of parameters, its analysis rules out a broad range of dark

matter candidates that early matter domination could otherwise make viable. Chapter 7 represents

an important step toward constraints on dark matter that account for our ignorance of the Universe’s

early history.
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CHAPTER 2:
DENSITY PROFILES OF ULTRACOMPACT MINIHALOS: IMPLICATIONS

FOR CONSTRAINING THE PRIMORDIAL POWER SPECTRUM1

2.1 Introduction

Ultracompact dark matter minihalos have emerged as a powerful probe of early-Universe physics.

Overdense regions with δ ≡ δρ/ρ & 10−3 at horizon entry seed the formation of dark matter minihalos

near the time of recombination (z ' 1000) [202], and such early formation yields highly compact

structures potentially visible through dark matter annihilation [227–243] or by their gravitational

signatures [202, 244–246]. The nondetection of these structures thus constrains the amplitude of

primordial density fluctuations, making it a probe of the primordial power spectrum [232–236, 246–

249] and hence of inflationary models [204] and the thermal history of the Universe [250].

These ultracompact minihalos (UCMHs) provide access to perturbations on scales too small to be

directly observed. Cosmic microwave background (CMB) observations indicate that the primordial

power spectrum of curvature fluctuations Pζ(k) is consistent with a slightly red-tilted but otherwise

featureless power law [251] with amplitude As = (2.142± 0.049)× 10−9 [16], and the Lyman-α forest

tells a similar story [15]. However, these observations are only able to probe wavelengths longer than

2 Mpc, and numerous inflationary models predict an enhancement in small-scale power [27–31, 38–

40, 49, 51–53, 56, 69–81]. Certain nonstandard thermal histories, such as an early matter-dominated

era [181–183, 224] or an era dominated by a fast-rolling scalar field [191], also enhance small-scale

fluctuations. Thus, probing the small-scale power spectrum is key to understanding early-Universe

physics.

Unfortunately, at sub-Mpc scales, we only have upper bounds on density fluctuations, which are

1The content of this chapter was previously published in Physical Review D as Refs. [26, 226] and is copyright c©
2018 American Physical Society. The original references are as follows: M. S. Delos, A. L. Erickcek, A. P. Bailey, and
M. A. Alvarez, Are ultracompact minihalos really ultracompact?, Physical Review D 97, 041303(R) (2018); M. S.
Delos, A. L. Erickcek, A. P. Bailey, and M. A. Alvarez, Density profiles of ultracompact minihalos: Implications for
constraining the primordial power spectrum, Physical Review D 98, 063527 (2018).
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obtained through the absence of secondary effects. Density contrasts of order 0.3 at horizon entry

would form primordial black holes, so constraints on their abundance constrain Pζ(k) . 3× 10−2

over a wide range of scales [252]. An excess of integrated power would imprint distortions onto the

CMB blackbody spectrum, so their nonobservation constrains Pζ(k) . 2× 10−5 for k . 104 Mpc−1

[19]. However, UCMHs supply the strongest constraints. The nondetection of gamma rays from dark

matter annihilation in UCMHs constrains Pζ(k) . 3× 10−7 for k . 107 Mpc−1 [234].

2.1.1 The ρ ∝ r−9/4 density profile

With one recent exception [232], all constraints derived from UCMHs have been calculated

assuming they develop the ρ ∝ r−9/4 density profile, which is drawn from analytic radial infall theory

[203, 253] and taken to apply to halos forming at z & 1000 due to the small velocity dispersion at

those times [202]. This profile has a much steeper inner form than is typically observed in simulations

(e.g., [194]), a property that enhances the observational signatures of UCMHs, but it is derived in an

idealized picture satisfying spherical symmetry, radial motion, and (after halo collapse) self-similarity,

or the absence of a scale length. It has been reproduced in N -body simulations from carefully

constructed self-similar initial conditions [254, 255] but not from more realistic conditions [256–258].

In contrast, dark matter halos at galaxy scales form by hierarchical clustering, and simulations of

this scenario yield halo density profiles of the Navarro-Frenk-White (NFW) form [205, 259, 260],

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
, (2.1)

with a ρ ∝ r−1 inner profile. A slightly steeper profile arises in simulations with a free-streaming

cutoff scale below which there are no fluctuations: halos at that scale form by steady accretion and

develop ρ ∝ r−3/2 inner profiles [261–266]. Neither of these pictures comes close to reproducing

the UCMH density profile. However, previous numerical experiments did not explore the collapse

of an extreme density fluctuation at z ' 1000, and prior UCMH analyses have assumed that the

combination of small velocity dispersion and isolation associated with a halo forming at such early

times will suffice to yield the ρ ∝ r−9/4 profile.

Recent simulation work in Ref. [267] explicitly explored the UCMH formation scenario and called

the applicability of the ρ ∝ r−9/4 profile into question. This work simulated early structure growth

from a power spectrum with a narrow boost (which we will call a “spike”) and concluded that the
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resulting halos have NFW profiles. However, Ref. [267] failed to rule out UCMHs with the ρ ∝ r−9/4

profile because it did not select for extreme density peaks, instead simulating a typical box whose

largest peak corresponded to a 4.3σ fluctuation (smoothed at the scale of the spike). Moreover,

Ref. [267] claimed that the absence of ρ ∝ r−9/4 profiles owes to the lack of spherical symmetry

and isolation in realistic conditions. Since Refs. [254, 255] observed (and we confirm) that spherical

symmetry is unnecessary for the ρ ∝ r−9/4 profile, this claim suggests that halos forming from peaks

rarer than 4.3σ could be sufficiently isolated to develop it. Reference [234] used peaks as extreme as

6σ to derive observational constraints, above the 5σ level that Ref. [267] claimed based on idealized

simulations to not produce the ρ ∝ r−9/4 profile.

Our approach differs in that we search millions of density fields to find a sufficiently extreme

peak. We simulate 6.8σ peaks collapsing at z ' 1000 in a more weakly boosted power spectrum than

that of Ref. [267]. This level of statistical extremity corresponds to a UCMH mass fraction f ' 10−9

in the analysis of Ref. [234], which is well below constrained levels2, implying that our density peak

is rarer than any level hitherto assumed to suffice for development of the ρ ∝ r−9/4 profile. We also

consider an alternative power spectrum amplification—a step instead of a spike—and show that

the density profile depends on the shape of the power spectrum. In particular, the spiked power

spectrum produces isolated halos with ρ ∝ r−3/2 inner density profiles, while the step-enhanced

spectrum produces halos by hierarchical assembly that develop NFW profiles. Lastly, we use idealized

simulations to argue that self-similarity is necessary to produce the ρ ∝ r−9/4 profile, which would

definitively rule out its appearance in a Gaussian random field.

2.1.2 Modeling halo populations to probe the primordial power spectrum

We also introduce a new model for predicting, based on their formation times, the density profiles

of minihalos that form from spiked power spectra. Spectral spikes can arise from steps in the inflaton

potential [27–30] or from particle production during inflation [49, 51, 52]. Near the free-streaming

cutoff, the power spectrum imprinted by an early matter-dominated era is also similar to a spike

[181–183, 224]. Moreover, spiked power spectra are less well constrained than flatter power spectra

by CMB spectral distortions, which limit the power integrated over a broad range in k-space [19].

2While our power spectrum spike peaks above the generalized constraint in Ref. [234], it is not ruled out because it is
not locally scale invariant.
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In this chapter, we begin an investigation of halos forming from spiked power spectra that we will

expand upon in Chapter 4.

Finally, we discuss the impact of our result on the capacity for minihalos to constrain the

primordial power spectrum. We use our model to calculate an upper bound on the amplitude of

spiked power spectra that incorporates the new shallower minihalo density profiles. This upper

bound is based on limits from Fermi-LAT [268] on gamma rays from dark matter annihilation.

Despite the reduced annihilation rate implied by the shallower profile, this constraint is stronger than

an equivalent UCMH constraint derived using the ρ ∝ r−9/4 density profile. Our model provides a

stronger constraint because it accounts for all halos, whereas the old UCMH model only counted

halos forming at z & 1000. Our calculation demonstrates the continued viability of minihalos as

probes of the small-scale power spectrum, and we discuss future avenues for improvement.

2.2 Simulation preparation

We carry out simulations of halos forming at z ' 1000 from extreme peaks in the density

field. This picture is intended to match the UCMH formation scenario [202], and we aim to show

conclusively that the ρ ∝ r−9/4 single-power-law density profile does not arise in halos forming due

to an enhancement of the primordial power spectrum.

2.2.1 Power spectrum

In order to perform numerical experiments on such early-forming minihalos, we must start with

an enhanced power spectrum. Inflationary models supply a rich phenomenology in this respect. Steps,

kinks, or second-derivative jumps in the inflaton potential would imprint spikes, steps, or bends,

respectively, on the primordial power spectrum [27–31]. Particle production during inflation can

produce a spike in the power spectrum [49, 51, 52], while multifield inflation can imprint steps [38–40]

or oscillations [53, 56]. Inflation aside, an early matter-dominated era enhances perturbations that

enter the horizon prior to the onset of radiation domination [181–183, 224], and an era dominated

by a fast-rolling scalar field generates a similar enhancement [191].

For our simulations, we consider two examples from these possible power spectrum enhancements.

First, we consider a narrow spike in the power spectrum. This shape has possible inflationary

origins, as discussed above, and is also qualitatively similar to the enhancement generated by an

early matter-dominated era at scales close to the free-streaming cutoff. Next, we consider a step in

the power spectrum, intended to represent the opposite extreme where fluctuations are enhanced
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Figure 2.1: The dimensionless primordial power spectrum of curvature fluctuations used in our
UCMH simulations. The solid line shows the spike modification, while the dotted line shows the
step. The vertical dashed line indicates the smallest k (largest scale) accessible in the simulations.

over a broad range of scales. The two power spectra are plotted in Fig. 2.1. We superpose these

modifications on a conventional power spectrum with amplitude As = 2.142× 10−9 and spectral

index ns = 0.9667 [16]. The spike contains 90% of its added power inside 1 e-fold in k, while the

step amplifies fluctuations over the full range of scales accessible to the simulation. We will focus on

the spiked power spectrum for most of Sec. 2.3 and return to the step in Sec. 2.3.5.

Halos forming from more extreme density contrasts are both more spherically symmetric [269]

and less affected by nearby structure. To best simulate the UCMH formation scenario, we tune our

power spectra so that halos forming by z = 1000 are exceedingly rare. In particular, the spiked power

spectrum is tuned so that a 6.8σ fluctuation is necessary to seed such early collapse, and we generate

a large number of random fields in order to obtain a handful of boxes to use as initial conditions for

our simulations. This procedure may be contrasted with that of Ref. [267], who simulated a typical

box whose most extreme peak was 4.3σ. UCMHs forming from peaks as extreme as 6σ are employed

to derive observational constraints [234], so we wish to exceed this amplitude to conclusively rule

out the ρ ∝ r−9/4 profile.

2.2.2 Simulation setup

A matter power spectrum is calculated at z = 1000 from the primordial power spectrum using the

Boltzmann code Camb Sources [270, 271]. To match simulation behavior, this power spectrum is

evolved back to an earlier time using the Mészáros equation [272]

d2δ

dy2
+

2 + 3y

2y(y + 1)

dδ

dy
− 3

2y(y + 1)
δ = 0, (2.2)
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which describes the subhorizon (Newtonian) evolution of dark matter density perturbations when

baryons and radiation fluctuations are neglected. Here y ≡ a/aeq, where aeq is the scale factor at

matter-radiation equality. The physical solution to this equation is obtained by matching its general

solution to the asymptotic behavior δ ∝ ln(0.44a/aH) during radiation domination, where aH is the

scale factor when the perturbation mode enters the horizon. This physical solution is [273]

δ ∝
[
ln

(
k

0.12h Mpc−1

)
− ln

(√
1 + y + 1√
1 + y − 1

)](
y +

2

3

)
+ 2
√

1 + y, (2.3)

which provides a convenient prescription for calculating the evolution of a density contrast δ at linear

order during mixed matter-radiation domination.

We choose to study fluctuations of order 0.2 kpc, so the spectral spike of Fig. 2.1 is centered

at wavenumber ks = 6.8 kpc−1. The starting redshift is chosen to be z = 8× 106 so that a density

contrast that collapses at z ' 1000 is initially of order 0.1. We do not expect our results to depend

significantly on either of these choices. We fix a comoving box size of 7.4 kpc and search periodic

Gaussian random fields generated at the initial redshift for candidate peaks to collapse near z = 1000.

Our search proceeds by first generating a Gaussian random field on a grid at the initial redshift using

our spiked power spectrum. We then linearly evolve that field to z = 1000 and check whether the

evolved density field has a peak3 with δ > 1.686, the linear threshold for collapse. If so, we use that

grid, and if not, we generate a new one. Once we have a suitable density field, we use the Zel’dovich

approximation to perturb a particle grid into a corresponding initial particle distribution. Since

our simulations begin while the Universe is radiation-dominated, initial velocities are computed by

differentiating Eq. (2.3); see Appendix A.1 for details.

For the spiked power spectrum shown in Fig. 2.1, we generate 2.3 million random density fields.

Nine of them meet the collapse criterion, so we use these as the initial density fields and simulate

them to z = 50. We also pick out one such density field, which we label the primary, to simulate at

higher resolution and perform convergence tests; a slice of its initial density field is shown in Fig. 2.2.

Notice how extreme the most overdense region is compared to its surroundings: this is indeed a rare

3For simplicity, we require δ > 1.686 in one grid-cell in our 5123-cell density field, which corresponds to a smoothing
scale of 0.014 kpc. Because the power is concentrated in the spike, the precise choice of smoothing scale is unimportant.
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Figure 2.2: A slice of the 7.4 kpc density field used as initial conditions for the primary simulation
run. Lighter regions are denser. The circle indicates the spherical region for a high-particle-density
simulation.

event.

We also resimulate each of these density fields with increased simulation-particle density by

resampling the initial field at higher resolution and including only a sphere of radius 0.93 kpc (with

vacuum boundary conditions) around the most overdense point. This cut-out region is drawn in

Fig. 2.2. This procedure allows us to probe smaller scales, and in Appendix A.2, we demonstrate

that it does not change the density profile of the UCMH in the primary density field at z = 100. This

convergence does not hold for the UCMHs in all nine fields: some of them begin to be influenced

by structure outside the sphere as early as z ∼ 200. Consequently, we only carry out these cut-out

simulations up to z = 400 for the other eight density fields.

2.2.3 N-body code

We use the cosmological simulation code Gadget-2 [274, 275] for our numerical experiments.

Gadget-2 is a hybrid N-body code that computes short-range forces using a tree method and

long-range forces using Fourier techniques on a mesh. A discussion on our choices of simulation

parameters can be found in Appendix A.2, along with convergence studies. We also model all matter

as collisionless dark matter with Ωm = 0.3089 [16]: at the scales we study, dark matter halos cannot

capture significant baryon content.
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In order to accurately simulate a halo collapse at z ' 1000, our experiments must begin during

radiation domination, so our N-body code must account for radiation. However, fluctuations in the

radiation density field decay rapidly after horizon entry (see e.g. [276]), so it is only necessary to

model the effect of a smooth radiation component on the expansion rate. We modified the publicly

available release of Gadget-2 to include such a radiation component. Tests of the accuracy of this

code can be found in Appendix A.1.

2.3 Simulation results

A visual inspection of the primary simulation box yields some key insights. First, we note that

our criterion for early collapse, that the linear density contrast be δ > 1.686 by z = 1000, has worked

as expected. Figure 2.3 shows a slice of the density field evolving from z = 1255 to z = 941 at the

location of the extreme density peak where we expect the UCMH to form, and we see that the

density at the central point grows astronomically around z = 1000, an indication of collapse. To

emphasize the rarity of this event, we also show the density field at z = 715: the UCMH is still the

only halo to have collapsed by this redshift.

Next, we look at the density field at a much later redshift. Figure 2.4 shows the density field at

z = 100 projected along one axis. The imprint of the spike in the power spectrum is evident, for

we see an almost uniform distribution of halos with no large-scale structure. This is quite unlike

a hierarchical growth picture (cf. Fig. 2.10). There is also minimal small-scale structure: these

halos appear generally isolated and are only linked by filaments. These points are emphasized in

the enhanced pictures of the main halo, where we see more clearly the lack of small-scale structure.

We also see the beginning of fragmentation of the filaments into halos, but this fragmentation is a

numerical artifact; see Appendix A.2.

According to the Rockstar halo finder [277], there are 530 halos with masses above 1.5M�

at z = 100, and these halos contain 24% of the total mass of the simulation box within their virial

radii. Such an abundance of halos is clearly expected in any picture that can produce a halo that

collapses by z ' 1000, but later halos have been neglected in prior UCMH treatments because they

are expected to be less compact. We will explore in Sec. 2.3.4 whether younger halos have the same

structure as the oldest ones.
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Figure 2.3: The density field for the primary run at different redshifts. Top: A (0.24 kpc)2×0.06 kpc
slice showing the collapse of the UCMH near z = 1000. The color scale is logarithmic in units of the
background matter density. Bottom: The full (7.4 kpc)3 projected density field at z = 715. There is
still only one halo, a testament to its rarity.

2.3.1 Density profiles

We now study the spherically averaged density profiles of the UCMHs. We simulated the UCMH

in the primary simulation box at the highest particle density (see Appendix A.2 for details), so we

first focus our study on that halo. This halo has mass M = 31M� at z = 100, and Fig. 2.5 shows

its density profile at z = 50, z = 100, z = 200, and z = 400 plotted in physical (not comoving)

coordinates. We first note that this halo clearly does not follow a ρ ∝ r−9/4 or similar single-power-law

form, contradicting the assumption made in prior UCMH treatments. We have conducted extensive

convergence testing to confirm the validity of this result, as described in Appendix A.2. The actual

density profile is shallower, which will substantially reduce the observational signals of these halos,

as we discuss in Sec. 2.5. However, the inner profile is still steeper than the ρ ∝ r−1 behavior of the
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UCMH

Figure 2.4: The projected density field of the primary simulation box at z = 100. Top: The full 7.4
kpc field. Bottom: Expanded pictures of the UCMH. The left (right) panel shows the projected
density field for the surrounding 1.5 kpc (0.3 kpc) cube. Note that the expanded pictures do not
fully match the white boxes because they are projected over smaller depths.
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Figure 2.5: The spherically averaged density profile of the UCMH in the primary density field at
z = 400, z = 200, z = 100, and z = 50. The vertical axis is scaled by r3/2 to reduce the vertical
range and better exhibit asymptotic behaviors; this practice will be adopted without remark in later
figures. The density profile approaches ρ ∝ r−3/2 at small r and ρ ∝ r−3 at large r and is fit well by
Eq. (2.4) (solid curve). The solid vertical line shows the physical scale of the power spectrum spike
at z = 1000, while the vertical dashed lines show the halo virial radius at different redshifts. Inset:
The same plot without y-axis scaling. A ρ ∝ r−9/4 curve is shown for comparison. We plot physical,
not comoving, quantities. We show results from the vacuum-bounded sphere inside rvir for z ≤ 100,
and results from the full box otherwise. The smallest radius at each redshift is set by r > 2.8ε, where
ε is the force-softening length parameter (see Appendix A.2), and contains N > 3000 particles.

NFW profile given by Eq. (2.1). In fact, the inner density profile approaches ρ ∝ r−3/2, and the full

density profile is fit well by the double-power-law form

ρ(r) =
ρs

(r/rs)3/2(1 + r/rs)3/2
(2.4)

which scales as ρ ∝ r−3/2 at small r and ρ ∝ r−3 at large r. We will call Eq. (2.4) the Moore profile

due to its similarity to the form in Ref. [278].

Inner profiles ρ ∝ r−γ with index γ ranging from 1.3 to 1.5 have previously been observed in the

smallest halos forming above a cutoff in the power spectrum [262–266], and Ref. [261] found that the

emergence of ρ ∝ r−3/2 is connected to the presence of a uniform-density core in the precursor density

peak. In this light, it is not surprising that ρ ∝ r−3/2 arises in our spiked power spectrum, since like

a cutoff power spectrum, it lacks power below the scale of the spike and produces cored peaks in the
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Figure 2.6: Radial density profiles at z = 400, z = 200, z = 100, and z = 50 of all nine UCMHs.
These density profiles are cut off above the virial radius at each redshift. Evidently, all of our UCMHs
possess similar density profiles to the one depicted in Fig. 2.5 (which is also plotted here).

primordial density field. The physical origin of the ρ ∝ r−3/2 profile is not well understood, but it is

known to be markedly less rotationally supported than the NFW profile [261].

We next remark that the inner density profile does not appear to change in time: observe the

remarkable concordance between the inner density profiles at different redshifts. This behavior was

noticed in the radial infall solution [203, 253], and it is explained in that context by the steepness

of the potential well: newly accreted matter passes through the central regions too quickly to

significantly affect the density there. This effect is only enhanced in a three-dimensional picture,

where newly accreted matter is likely to possess too much angular momentum to pass through the

central parts of the halo at all. The stability of the density profile in time is important to us for two

reasons. First, it allows us to use the measurement of the inner density profile at an early redshift

as a proxy for the inner density profile at a later redshift, when the expansion of the comoving

coordinates has brought the inner profile beyond our resolution limits (due to force softening; see

Appendix A.2). In other words, we view the innermost points in Fig. 2.5, present only at high z, as

also representing the density profile at later z, e.g. z = 50. This argument allows us to claim that we

have probed radii down to 10−3.5rvir at z = 50, where rvir is the UCMH virial radius. (If one does

not accept this argument, we have still probed radii down to 10−2.5rvir at z = 100.) Second, this

stability means we can study the density profile at redshifts of order z ∼ 100 and assume that—in

the absence of disruptive events—the profile is the same today. Observational signals can therefore

be calculated using this profile (see Sec. 2.5).
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Figure 2.7: The virial mass Mvir plotted against the scale factor a for all nine UCMHs. For
a & 2.5× 10−3 (z . 400), the growth appears logarithmic, presenting as a straight line on this plot.
A Mvir ∝ a reference curve is shown as a dashed line: these halos are growing more slowly than
Mvir ∝ a.

Finally, we remark on the fitting parameters ρs and rs of the Moore profile [Eq. (2.4)] for the

UCMH shown in Fig. 2.5. The scale radius rs that separates the ρ ∝ r−3/2 behavior from the

ρ ∝ r−3 behavior appears to be set by the physical scale associated with the spike in the power

spectrum at z = 1000, obeying rs ' 0.7[(1 + z)ks]
−1. Similarly, the scale density ρs is close to the

background physical density at z = 1000, obeying ρs ' 30(1 + z)3ρ̄0, where ρ̄0 is the background

matter density today. These correlations suggest that the ρ ∝ r−3/2 inner profile is set during the

earliest stages of the halo’s growth while the ρ ∝ r−3 outer profile grows during late accretion. We

will develop these ideas in more detail in Sec. 2.3.4.

All of these results come from the UCMH in the primary simulation run. We also simulated

eight other UCMHs, and we show the density profiles of all nine of them in Fig. 2.6. All of these

halos collapsed near z = 1000, and there is clearly little deviation in the structure of these halos. In

particular, all of them exhibit the same ρ ∝ r−3/2 inner density profile, providing further evidence

that the ρ ∝ r−9/4 pure power law density profile does not arise in a realistic formation scenario.

2.3.2 Mass accretion

We briefly remark on the mass accretion history of the UCMHs. UCMHs have been previously

assumed to grow as M ∝ a [202], but this is a result from radial infall theory [203]. This theory

describes an overdense region in an unperturbed background, which is very different from the

Gaussian random field from which a realistic halo would form.

Figure 2.7 shows the growth of our UCMHs in virial massMvir. For z . 400 (a & 2.5× 10−3), the

mass of these halos appears to be logarithmic in a. We do not claim that this logarithmic behavior
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Figure 2.8: A merger event and its result. Top: A (1.5 kpc)2× 0.7 kpc (projected) region showing
the first merger event experienced by the larger halo, which formed at z ' 1000. Bottom: The
change in the density profile of this UCMH as a result of the merger. Mass is dispersed from the
inner region.

necessarily continues to later times: halos that form from flatter power spectra have been observed

to grow with redshift z as M ∝ e−αz for some α [279], which becomes slower than logarithmic, and

halos in a spiked power spectrum could exhibit similar growth. However, we have confirmed that

these halos grow much more slowly than prior UCMH treatments have assumed.

2.3.3 Mergers

We noted earlier that halo density profiles are expected to remain stable over time in the absence

of disrupting events. Halo mergers, however, are disruptive events and may be expected to alter the

inner density profile. In fact, this topic has been already explored in the context of the steeper inner

profiles (ρ ∝ r−γ with γ > 1) that arise in the smallest halos above a cutoff in the power spectrum

[280]. Consecutive mergers cause these halos to relax toward shallower ρ ∝ r−1 inner density profiles.

However, these simulations used halos with concentration parameter c = rvir/rs ' 2, where rvir

is the halo virial radius and rs is the scale radius. Halos forming in a spiked power spectrum are

sufficiently isolated that they may be expected to have concentration parameters of order 10 or

higher by the time a merger takes place. A systematic study of the effect of halo mergers on highly
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concentrated halos is beyond the scope of this work, but we will briefly discuss in this section the

effect of a merger on one of our UCMHs.

Three of our nine UCMHs underwent mergers between z = 100 and z = 50, with another two

impending. One such event occurring at z ' 86 is depicted in the upper panel of Fig. 2.8. The

UCMH had concentration c = 12 at this time. The lower panel shows the density profile of this halo

at z = 100 and z = 50 before and after the merger takes place, and we see that this event has been

energetic enough to disperse mass out of the center of the halo and make the inner profile shallower.

Unfortunately, we do not have the resolution at these redshifts to determine the slope of the inner

profile after the merger, but the fact that the density profile at r < rs is altered indicates that the

stability we observed in Sec. 2.3.1 does not hold after mergers.

2.3.4 Other minihalos

So far, we have studied only the exceptionally rare halos that form at z ' 1000. In this section, we

explore a sample of other halos in the simulation box shown in Fig. 2.4. We pick 10 halos, including

the UCMH, with masses evenly distributed between 3 M� and 32 M� at z = 100. Figure 2.9 shows

the density profiles of these halos. As we discussed in Sec. 2.3.1, we expect that each halo will obey

rs ∝ ack
−1
s (2.5)

ρs ∝ a−3
c ρ̄0, (2.6)

where ac is the scale factor at the halo’s formation. To test this hypothesis, we must determine

ac for each halo. We do so using linear theory in the following way. We find the earliest time at

which Rockstar identifies the halo and map the location of the halo at this time onto the initial

density grid. Then we walk from this grid-cell to a local maximum in the density field by successively

moving to the densest neighboring cell. This local maximum is taken to be the amplitude δpk of the

protohalo peak. Finally, we evolve the grid using linear theory, Eq. (2.3), and find the time at which

δpk = 1.686, the linear threshold for collapse. The scale factor at this time is taken to be ac.

With a formation time ac now associated with each halo, we test Eqs. (2.5) and (2.6) by plotting

in Fig. 2.9 the same density profiles with ρ scaled to a−3
c ρ̄0 and r scaled to ack−1

s for each halo. We
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Figure 2.9: The density profiles of a sample of 10 halos in the same simulation box at z = 100. Top:
The density profiles in physical coordinates. Bottom: The density profiles scaled to each halo’s
formation time using Eqs. (2.5) and (2.6).

find that the scatter in the density profiles is greatly reduced, with the bulk of the halos obeying

ρsr
3/2
s ' 17ρ̄0k

−3/2
s a−3/2

c (2.7)

(ρsr
3/2
s is the r � rs asymptote of ρr3/2 for a Moore profile). The two halos lying farthest below this

line have formed only slightly before the time z = 100 at which we are seeing them, so it is plausible

that their inner profiles are still growing.

We do not attempt to study the scaling of ρs and rs separately because this requires fitting

functional forms to the density profiles, which is unreliable with the resolution to which we are

limited here. However, ρsr
3/2
s alone is a useful combination because it determines most of the

annihilation signal of the halo (see Sec. 2.5). Our ultimate goal is to predict halo density profiles

from the power spectrum in order to place constraints thereon, and we find the spread in ρsr
3/2
s to

be well within a factor of 2 of Eq. (2.7), which is promising. However, our halo sample is small and

we are biased by resolution toward larger halos. We are also limited to a single power spectrum. We
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Figure 2.10: A halo at z = 100 that collapsed at z ' 1000 from the step power spectrum shown in
Fig. 2.1. Top: The projected full (7.4 kpc)3 density field and an expanded picture of the 1.5 kpc
cube surrounding the UCMH. Bottom: The density profile of this halo. It is fit well by the NFW
profile.

will carry out in Chapter 4 a more systematic study of the density profiles of halos forming from

spiked power spectra.

2.3.5 Power spectrum with step

We finally step away from the spiked power spectrum to verify that a picture with power evenly

distributed across scales still produces NFW halos even in the UCMH scenario involving the early

collapse of rare extreme overdensities. We used the step power spectrum shown in Fig. 2.1 and

prepared a set of initial conditions in a (7.4 kpc)3 periodic box using the procedure described in Sec.

2.2. Boxes were repeatedly generated until the z = 1000 collapse criterion was met, which occurred

after about 2300 boxes. We began the simulation run at z = 8× 106 and ended it at z = 100; the

resulting UCMH at z = 100 is shown in Fig. 2.10. It is evident from the density field that this is

a very different picture from what we have seen with our spiked power spectrum. The large-scale

power has caused much of the mass within the box to collapse into the UCMH, while at the same

time, the small-scale power has given this halo abundant substructure.
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Figure 2.10 also shows the radial density profile of this halo. It follows the NFW form well, and

does not fit the Moore form at all. Moreover, we resolve an inner density profile that is at least as

shallow as ρ ∝ r−1. Even halos that collapse near z ' 1000 still possess the shallow inner profiles

characteristic of hierarchical clustering.

A natural question to ask is how the density profiles behave in the transition between a spiked

and a scale-invariant power spectrum. A careful treatment is beyond the scope of this work, but we

will see in Chapter 4 that the answer is ultimately related to mergers. As we discussed in Sec. 2.3.3,

mergers induce shallowing of the inner density profile toward ρ ∝ r−1. Meanwhile, mergers occur

more frequently when the power spectrum spike is wider, culminating in the hierarchical clustering

characteristic of conventional power spectra. These concepts explain, at least qualitatively, the shift

from ρ ∝ r−3/2 to ρ ∝ r−1 inner profiles when the spike in the power spectrum is replaced by a step.

As a final remark, we have found between the spiked and step power spectra that UCMHs develop

the same density profiles as halos that form at much later times. The spike produces UCMHs with

similar density profiles to those of the smallest halos forming above a free-streaming cutoff, while

the step produces UCMHs with density profiles resembling those of the galactic halos created by

hierarchical clustering. In retrospect, this is not surprising. Ref. [202] conceived of UCMHs as the

late stage of rare non-Gaussian density fluctuations, so they assumed a conventional (unenhanced)

power spectrum when calculating the velocity dispersion at z ' 1000. The small velocity dispersion

that resulted was the basis for the argument that radial infall theory would apply, but this velocity

dispersion would be increased by any power spectrum enhancement. There is no difference, aside

from the emerging dominance of a radiation or dark energy component, between halos forming from

a boosted power spectrum at early times and halos forming from a conventional power spectrum at

late times. However, the velocity dispersion is not the only obstacle to the ρ ∝ r−9/4 profile, as we

discuss next.

2.4 Conditions for the ρ ∝ r−9/4 density profile

We now check whether we can produce the ultracompact ρ ∝ r−9/4 density profile from an

initially uniformly overdense ellipsoid. We construct the initial peak at z = 18 000 to collapse near

z = 1000, and we evolve it under matter domination (so radiation is neglected) to z = 200, at which

time its radial density profile is plotted in Fig. 2.11. We find that the density profile is well described

by a pure power law ρ ∝ r−α with α > 2. While the power-law index α is not exactly −9/4, the
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best-fit α is even steeper at α ' 2.38. We conclude that our simulation parameters are sufficient to

produce such steep cusps, and that it is for physical reasons that they do not appear in realistic

simulations. This test also confirms the finding of Refs [254, 255] that spherical symmetry is not

important to the production of the ρ ∝ r−9/4 density profile.

Let us recount three scenarios under which the ρ ∝ r−α similarity solution has been reproduced

in three-dimensional simulations. The first, presented in Refs. [254, 255], used carefully constructed

initial conditions to match the structure of the analytic similarity solution of Ref. [253]. The second,

presented in Ref. [267], begins with an initial peak in the shape of a radial Gaussian function. The

third, presented here, begins with a uniformly overdense ellipsoid. The key feature shared between

these scenarios is self-similarity, or the absence of a scale length. This is obvious in the first case but

more subtle in the other two. A uniform ellipsoid or radial Gaussian clearly has a scale length, but

only within a finite (or effectively finite) region. This initial structure does not significantly affect the

final density profile because it collapses as the halo first forms, and outside of it, the fractional mass

excess contained within a given radius obeys δM/M ∝M−1: it possesses self-similarity of the form

treated in Ref. [253]. This common feature between otherwise disparate initial conditions strongly

suggests that self-similarity is a necessary condition to produce the ρ ∝ r−9/4 profile.

It is important to note that this form of self-similarity only holds for uncompensated peaks.

Peaks generated by a localized boost to the power spectrum are compensated by a surrounding

trough, which maintains the scale length indefinitely. To study how this permanent scale length

affects the density profile, we employed the description of Ref. [269] to construct an idealized initial

peak drawn from our spiked power spectrum of Fig. 2.1 with amplitude δ ' 0.1 constrained in order

to effect collapse at z ' 1000. This peak is necessarily in isolation and possesses no substructure.

We simulated it from z = 8× 106 to z = 100 and found that it produced the same density profile

as Fig. 2.5. This is consistent with the results of Ref. [261], who carried out similarly idealized

simulations of halos in a cutoff power spectrum, and we conclude that isolation alone is not sufficient

to produce the ρ ∝ r−9/4 density profile.

While isolation is evidently insufficient to produce the ρ ∝ r−9/4 profile, it is also clearly necessary.

Halos that undergo major mergers develop isotropic velocity fields [281], which produce the ρ ∝ r−1

inner profile characteristic of hierarchical growth [282]. Ref. [267] also confirmed via idealized

simulations that an uncompensated peak must have much greater amplitude than surrounding
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Figure 2.11: The density profile at z = 200 of a halo that formed from a uniform ellipsoid. This
follows a pure power law ρ ∝ r−α (solid line) with α > 2, as predicted by radial infall theory.

structure to maintain its ρ ∝ r−9/4 profile.

We argued in Sec. 2.4 that self-similarity and isolation are both necessary conditions for the

development of the ρ ∝ r−9/4 profile. We now claim that these conditions cannot both be satisfied

in a Gaussian density field. Consider first the case where fluctuations are enhanced over a wide

range of scales, as in our “step” modification. This picture produces a nearly self-similar peak in the

spherical average, but it also generates an abundance of structure at ever smaller scales. Isolation fails

here as structure grows hierarchically, resulting in ρ ∝ r−1 inner profiles. We can instead preserve

isolation by suppressing small-scale power by creating a spike (or cutoff) in the power spectrum,

but this feature imposes a scale length, breaking self-similarity, and ρ ∝ r−3/2 profiles result. In

no Gaussian formation scenario can both self-similarity and isolation be satisfied, and as a result,

the ρ ∝ r−9/4 similarity solution is not physically realized if fluctuations are Gaussian. We note,

however, that an alternative seeding mechanism that generates uncompensated peaks in a relatively

smooth background can still yield halos with ρ ∝ r−9/4 profiles, as demonstrated by the collapse of

the uniform ellipsoid described in Sec. 2.4 and of the radial Gaussian overdensity in Ref. [267].

2.5 Constraining the power spectrum

UCMHs have been employed to constrain the primordial power spectrum through nonobservation

of their predicted signals in a variety of contexts. For thermal-relic dark matter models, such as

the weakly interacting massive particle (WIMP) model [198, 199, 283], the dark matter annihilation

rate is greatly increased by the compactness of the assumed ρ ∝ r−9/4 density profile. The strongest

constraints therefore come from nonobservation of the strong gamma-ray [232–234] or neutrino

[235, 236] signals that are expected from WIMP annihilation within such dense clumps. These
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annihilation signals would also lead to other observable effects, such as heating of the intergalactic

medium [238, 239] and galactic gas [240] and interactions with the CMB or other background

photons [241–243]. The primordial power spectrum can also be constrained by searching for UCMHs

using astrometric microlensing [246] or macrolens distortions [244] or by constraining the UCMH

abundance using pulsar timing arrays [245, 249].

However, with the exception of Ref. [232], all of these works used only minihalos that form at

z & 1000 and assumed these halos possessed the ρ ∝ r−9/4 density profile. We showed in Sec. 2.3

that minihalos forming in an enhanced power spectrum, even UCMHs forming at z & 1000, develop

significantly shallower profiles. We also found that younger minihalos possess the same density

profiles as the oldest ones. In this section, we explore the impact of this discovery. The observational

signatures of UCMHs forming at z & 1000 are weakened by the shallower density profile, but our

analysis is now able to include minihalos forming at z < 1000. As we saw in Fig. 2.4, these younger

minihalos are far more abundant than the rare UCMHs.

Broadening to the entire population of minihalos brings new challenges. Minihalo-minihalo

mergers will reduce the minihalo count and alter their density profiles [280], and tidal interactions

within galactic structures will have more impact on the shallower density profiles [284]. These

considerations are beyond the scope of this chapter, but to motivate further study, we calculate

in this section how the new minihalo picture directly alters previous constraints on the power

spectrum derived from UCMHs. To this end, we focus on the upper bound derived by Bringmann,

Scott, and Akrami [234] (hereafter BSA) based on the gamma-ray signal from WIMP annihilation

within UCMHs. In our calculation, we adopt our new minihalo model from Sec. 2.3.4 but otherwise

replicate BSA’s calculation as closely as possible. In particular, we employ the same Fermi-LAT

data and, like BSA, when deriving bounds from diffuse emission, we consider only a Galactic

contribution and neglect the possibility of improving constraints by including extragalactic sources

(e.g., Refs. [229, 232]).

The derivation of a constraint on the power spectrum using WIMP annihilation in minihalos

proceeds in three steps:

1. The annihilation signal of a minihalo is calculated.

2. A constraint on the number density of minihalos is calculated from the nonobservation of such
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an annihilation signal.

3. The number density constraint is converted into a constraint on the primordial power spectrum

using the statistics of Gaussian random fields.

In past studies, such as BSA, UCMHs are assumed to collapse at z ' 1000, so the UCMH luminosity

is solely a function of its size. We now have the machinery to study minihalos collapsing at any

redshift, so we calculate the minihalo luminosity L as a function of both its formation time and the

scale of the density fluctuation that sourced it.

2.5.1 Halo luminosity

We assume that the density profile of a minihalo follows the Moore fitting form given by Eq. (2.4).

In addition, we found in Sec. 2.3 that the Moore fitting parameters rs and ρs can be predicted from

the halo formation time as

rs = f1k
−1
s ac

ρs = f2ρ̄0a
−3
c , (2.8)

where ρ̄0 = Ωcρcrit is the background dark matter density today, ks is the (comoving) wavenumber

associated with the spike in the power spectrum, and ac is the halo formation time in a spherical

collapse model. The coefficients f1 and f2 are determined from simulations; they possess some scatter

between halos, but we will neglect that scatter for the purpose of this calculation. The annihilation

signal of the Moore profile depends dominantly on the combination f2
2 f

3
1 and only logarithmically

on f2 alone, so we will use f2f
3/2
1 = 17 from Eq. (2.7), which was derived from a sample of halos

forming at different times, along with the more approximate value f2 ' 30 derived from the UCMHs

alone.

The gamma-ray signal L of a halo with density profile ρ(r) may be calculated as

L = 4πg

∫ R

0
r2ρ2(r)dr, (2.9)

where R is the radius of the halo and g is a factor related to the annihilation mechanism. For

35



threshold photon energy Eth,

g =
∑

k

∫ mχ

Eth

E
dNk

dE
dE
〈σkv〉
2m2

χ

, (2.10)

where dNk/dE is the differential photon yield of the kth annihilation channel and 〈σkv〉 is its cross

section. Equation (2.10) describes the energy flux; for the photon flux, the factor of E is removed

from the integrand.

For now, we keep our calculations model-independent and return to Eq. (2.9). Equation (2.9)

diverges for a ρ ∝ r−3/2 profile, but this implies that annihilations would have smoothed out the

central cusp within some small radius. We use the standard estimate [285]

ρmax =
mχ

〈σv〉(t− ti)
(2.11)

for the maximum density at time t in a structure that formed at ti, where mχ is the mass of the

WIMP and 〈σv〉 is its thermally averaged velocity-weighted cross section (in the zero-velocity limit).

Note that t− ti ' t today if halo formation occurs at z & 10, and we will see in Sec. 2.5.4 that this

is true for the minihalos relevant to power spectrum constraints. Thus, we take t − ti to be the

age of the Universe today, making ρmax the same for all minihalos. For a canonical WIMP with

〈σv〉 = 3× 10−26 cm3s−1 and mχ = 1 TeV, ρmax ∼ 1016ρ̄0.

We now evaluate Eq. (2.9) for a Moore profile as given by Eq. (2.4) modified to have maximum

density ρmax. The choice of radius R has negligible impact as long as R > rs, so taking R→∞, we

obtain

L = 4πgρ2
sr

3
s

[
1

3
+ ln(1 +D)− 3 + 2D−1

2(1 +D−1)2

]
, (2.12)

where D ≡ (ρmax/ρs)
2/3 = (f−1

2 ρmax/ρ̄0)2/3a2
c . For halos collapsing at z . 1000, we find that

D & 104 � 1 for a canonical WIMP, so Eq. (2.12) simplifies to

L ' Bk−3
s a−3

c ln(βac) (2.13)

with

B ≡ 8πgf2
2 f

3
1 ρ̄

2
0, β ≡ e−7/12

(
ρmax

f2ρ̄0

)1/3

. (2.14)

B and β are independent of the scale ks of the spike in the power spectrum, and since we are
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neglecting scatter in f1 and f2, they are the same for all halos. We remark that since β ∼ 105,

the logarithmic dependence on ac is weak for ac & 10−3. If halos relax to a ρ ∝ r−1 inner profile

due to mergers or other disruptive dynamics, a similar calculation with the NFW profile yields

L ' Bk−3
s a−3

c /6, which is smaller by a factor of ∼ 30 for formation time z ∼ 100. In this case,

Eq. (2.9) converges, so the effect of ρmax is negligible.

2.5.2 Halo abundance

We use observational detection limits to constrain the minihalo number density based on the

luminosity we computed above. Following BSA, we employ two approaches that utilize different

observations and yield different constraints. First, we treat the minihalos as point sources and use

their nonobservation to constrain their number density. Next, we consider the diffuse background

flux from minihalos within the Milky Way and use the observed background gamma-ray flux to

constrain the minihalo number density.

Point sources The gamma-ray flux F from a point source is related to its luminosity L and

distance d by F = L/(4πd2). If our detecting instrument has flux sensitivity Fmin to point sources,

then this imposes a maximum observable distance dobs =
√
L/(4πFmin) corresponding to the

observable volume

Vobs =
1

3
√

4π

L3/2

F
3/2
min

. (2.15)

If Vobs were the same for all halos, then the expected number of observable objects would be

λ = nVobs, where n is the halo number density, and we could use Poisson statistics to constrain n

from our knowledge of Vobs. However, in our model, L, and hence Vobs, is a function of the formation

time ac of the minihalo. Instead of the total number density n, we must consider the differential

number density dn/dac of minihalos forming at a = ac. The expected number of observable minihalos

is now

λ =

∫ 1

0
dac

(
dn

dac

)

obs

Vobs(ac), (2.16)

where we write (dn/dac)obs to clarify that we are referring to the number density of minihalos within

Vobs, which in general differs from the cosmological mean dn/dac.

From Poisson statistics, the probability that there is at least one observable object is P (Nobs >

0) = 1− e−λ. If the confidence level associated with the flux threshold Fmin is x, then the probability

of observing at least one object is Pobs = x(1− e−λ). If we observe no objects, an upper bound on λ
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with confidence level y is obtained by setting Pobs ≤ y, implying λ ≤ − ln(1− y/x). Combining this

result with Eqs. (2.15) and (2.16), we find

∫ 1

0
dac

(
dn

dac

)

obs

L3/2(ac) ≤ −3
√

4π ln(1− y/x)F3/2
min, (2.17)

which gives us the prescription for constraining the local number density of minihalos based on the

nonobservation of point sources. Due to the dependence of a minihalo’s luminosity on its formation

time, we constrain a formation time-weighted density instead of a total UCMH density.

To complete the calculation, we need to relate (dn/dac)obs to the cosmological mean dn/dac

that is predicted by the power spectrum. To do this, we assume that the spatial distribution

of minihalos is proportional to that of dark matter at large4; that is, n(x) ∝ ρ(x). We define

µ(d) ≡ 3M(d)/(4πd3ρ̄0) as the ratio of the dark matter mass M(d) contained within distance d

from Earth to the cosmological mean dark matter mass contained within an equal volume. Then the

mean minihalo number density within dobs is related to the cosmological mean by the factor µ(dobs),

implying
(

dn

dac

)

obs

= µ



√

L(ac)

4πFmin


 dn

dac
. (2.18)

We evaluate µ(d) in Appendix A.3 and plot it in Fig. 2.12 assuming an NFW profile for the Milky

Way with parameters from Ref. [286]. For dobs . 8 kpc, the distance to the Galactic center,

µ(dobs) ' 2× 105 is approximately constant.

Diffuse flux The calculation is simpler for the case of a diffuse gamma-ray flux. If dF/dΩ is the

upper bound on the observed differential gamma-ray flux that can be attributed to minihalos, then

we can relate this to the differential flux summed over all minihalos along the line of sight,

dF
dΩ
≥
∫ ∞

0
s2ds

∫ 1

0
dac

dn

dac

ρ(s)

ρ̄0

L(ac)

4πs2
, (2.19)

4Galactic tides and other disruptive processes would realistically alter the spatial distribution of minihalos, but we
neglect them here.
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Figure 2.12: The ratio µ(d) = 3M(d)/(4πd3ρ̄0) of the dark matter mass M(d) within distance d of
Earth to the cosmological mean dark matter mass in an equal volume. An NFW profile is assumed
for the Milky Way with parameters from Ref. [286]. Minihalos are assumed to follow this spatial
distribution.

where s is the line-of-sight distance. Here we have inserted the factor ρ(s)/ρ̄0 to account for the

Milky Way density field at distance s from Earth. Following BSA, we are only interested in the

Galactic contribution to the diffuse flux, so we truncate the density field beyond the Milky Way,

eliminating the need to redshift distant sources. The minihalo abundance constraint from the diffuse

flux at angle θ to the Galactic center now becomes

∫ 1

0
dac

dn

dac
L(ac) ≤

4π

K(θ)

dF
dΩ

, (2.20)

where

K(θ) ≡
∫ ∞

0
ds
ρMW(

√
s2 + r2

0 − 2sr0 cos θ)

ρ̄0
, (2.21)

ρMW(r) is the Milky Way density profile, and r0 is the solar orbital radius.

2.5.3 The power spectrum

Finally, we must find the relationship between dn/dac and the power spectrum P(k). The

standard way to relate a halo population to a power spectrum is Press-Schechter theory [287]. For

any power spectrum with a small-scale cutoff, including a spiked power spectrum, it is necessary

to employ a sharp k-space smoothing filter to avoid overpredicting structure below the cutoff scale

[288–290]. However, there are additional challenges in adapting Press-Schechter theory to our

purposes. Halo formation times can be obtained from the conditional mass function [291], but these

yield the average formation time of progenitor halos. It is necessary to construct merger trees to

39



study the first progenitor. Also, Press-Schechter theory always destroys a halo when two halos

merge. For unequal-mass mergers, a remnant of the smaller halo is generally expected to survive as

a subhalo with its central structure intact [284].

For our calculation, we employ a more direct approach. Bardeen, Bond, Kaiser, and Szalay [269],

hereafter BBKS, formulated a description of the statistics of peaks in a Gaussian random field. In

this approach, each peak in the primordial density field is to be identified with a halo at late times.

Spiked power spectra are very natural arenas for peak theory because they possess finite integrated

power and generate peaks around a particular scale, so it is not necessary to use any smoothing

filter. To represent a spike centered at wavenumber ks, we consider a delta-function matter power

spectrum of the form P(k) ∝ D(a)2ksδ(k − ks), where D(a) is the linear growth function. We will

see in Sec. 2.5.4 that the minihalos contributing to our power spectrum constraint form in matter

domination, so D(a) = a, and we may write

P(k) = Aa2ksδ(k − ks), (2.22)

where A parametrizes the integrated area of the spike. We use the BBKS formalism to calculate

the number density of peaks with δ > δc, where δc = 1.686 is the linear collapse threshold. The

identification of these peaks with halos leads to a number density n that increases in time solely

due to halo formation, implying we can differentiate it with respect to scale factor a to obtain the

distribution of halos by formation time. A disadvantage to this procedure is that minihalo-minihalo

mergers are not automatically accounted for and must be handled separately, a task that is beyond

the scope of this work5.

As detailed in Appendix A.4, we obtain

dn

dac
=
k3
s

ac
h

(
δc

A1/2ac

)
, (2.23)

where h(ν) is the distribution of peak heights given by Eq. (A.10) (see Fig. A.8). With the minihalo

5However, as we will see in Chapter 4, mergers become rare as the power spectrum spike is narrowed. With a
delta-function spike in the primordial power spectrum, we suspect that they are negligible.
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signal given by Eq. (2.13), the abundance constraints given in Eqs. (2.17) and (2.20), and this

relation between dn/da and the power spectrum, we can place an upper bound on the amplitude A

of the spike in the matter power spectrum. The final step is to convert this bound into a bound

on the primordial curvature power spectrum. We adopt a similar delta-functional form for the

primordial power spectrum,

Pζ(k) = A0ksδ(k − ks), (2.24)

with amplitude A0. The transfer function given by Eq. (A.14) converts the bound on A into a bound

on A0.

To carry out the calculation, we assume a canonical WIMP with cross section 〈σv〉 = 3 ×

10−26 cm3s−1 and mass mχ = 1 TeV that annihilates into bb̄ pairs. We take the Fermi-LAT

point-source sensitivity for energies above 100 MeV to be Fmax = 4× 10−9 cm−2s−1 for a 5σ

detection, and we set y = 0.95 in Eq. (2.17) for a 95% confidence limit. For the diffuse flux, we use

dF/dΩ = 1.2× 10−5 GeVcm−2s−1sr−1 as the 2σ limit (with systematic error alone) in the energy

flux from the Galactic poles as measured by Fermi-LAT [292]. Finally, we take the Milky Way to

have an NFW density profile with parameters determined in Ref. [286]. All of these choices are

picked solely for parity with BSA, and further detail can be found there.

Figure 2.13 shows the resulting upper bound on the integrated area A0 of a spike in the primordial

curvature power spectrum if the spike is located at wavenumber ks. We show the constraints from

point sources and diffuse flux separately, and the shaded regions are forbidden. We wish to compare

this constraint to the upper bound derived in BSA under the UCMH picture, but BSA assumed a

locally scale-invariant power spectrum for their analysis. Therefore, we employ the UCMH abundance

constraints in BSA to derive a constraint on the spiked power spectrum of Eq. (2.22). This calculation

is detailed in Appendix A.5, and the results are plotted on Fig. 2.13 as dashed lines. Evidently, new

minihalo constraints can be stronger than old UCMH constraints despite employing shallower density

profiles. For comparison, we also show as dotted lines the upper bounds that employ the shallower

density profiles while restricting to UCMHs forming by z ≥ 1000. These bounds are calculated by

altering the upper limit of the integrals in Eqs. (2.17) and (2.20). Evidently, the shallower density
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Figure 2.13: The upper bound on the integrated area A0 of a spike in the primordial curvature
power spectrum centered at scale wavenumber ks. Black curves use point sources, while red curves
employ the diffuse flux. The shaded regions are ruled out in the new minihalo picture with shallower
density profiles. The dashed lines show the corresponding constraints in the old UCMH model
calculated using the abundance constraints in BSA. As another comparison, the dotted lines show
the constraints using shallower density profiles while still restricting to UCMHs forming at z ≥ 1000.
While the new density profiles slightly weaken the upper bound, the inclusion of all minihalos ends
up leading to stronger constraints.

profiles weaken the upper bound on the power spectrum by roughly a factor of two6. The inclusion

of all minihalos, instead of only the rare UCMHs that form by z = 1000, more than compensates for

this loss.

2.5.4 Discussion

To develop a better understanding of the power spectrum constraints in this new minihalo picture,

we specialize to the diffuse flux and to point sources in the small-object limit where dobs is sufficiently

short that µ(dobs) ≡ µ is constant7. In these cases, it is possible to derive the analytic constraints

6In contrast, the signal from each UCMH is reduced by a factor of about 200. In the next section, we discuss why
power spectrum constraints derived from UCMHs are so insensitive to reductions in the UCMH signal. This feature
is a consequence of the restriction to halos forming at z ≥ 1000 and is no longer applicable once all minihalos are
included.

7The small-object limit produces the power-law branch of the point-source constraint in Fig. 2.14, implying that this
limit corresponds to ks & 20 Mpc−1.
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(see Appendix A.4)

A
(

ln
βδc

A1/2

)2/9 [(
ln

βδc

A1/2

)
I3/2 − J3/2

]4/9

≤
(
−3
√

4π ln(1− y/x)

µ

)4/9(
δ3
cksFmin

B

)2/3

(2.25)

for point sources in a uniform field with µ times the background density and

A
[(

ln
βδc

A1/2

)
I1 − J1

]2/3

≤
(

4πδ3
c

K(θ)B

dF
dΩ

)2/3

(2.26)

for diffuse sources. Here, I3/2 = 0.228, J3/2 = 0.370, I1 = 0.0477, and J1 = 0.0478 are different

moments of the peak height distribution h(ν).

We first note that if we neglect logarithms8, the constraint on A is proportional to B−2/3 and

hence to the −2/3 power of the WIMP annihilation rate within minihalos [see Eq. (2.13)]. This

relationship implies that the upper bound on A is highly sensitive to the WIMP model. For example,

if the annihilation cross section 〈σv〉 were increased by a factor of 8, the upper bound on A would be

reduced by a factor of 4. This behavior is a stark contrast to that of constraints in the old UCMH

picture, which exhibit a very weak dependence on WIMP model (see BSA Fig. 5).

The same distinction arises when considering the observational flux constraint Fmin or dF/dΩ.

The upper bound on A is more sensitive to these observational constraints in the new minihalo

picture than in the old UCMH picture. Therefore, improved observational limits are far more

valuable in the new picture. This property is also responsible for how, as depicted in Fig. 2.13, the

point-source constraint in the new picture exhibits markedly stronger ks-dependence: larger objects

are more visible, and this heightened visibility now significantly strengthens the upper bound on

the power spectrum on the corresponding scales. Likewise, we saw in the last section that reducing

the UCMH gamma-ray signal by a factor of 200 only weakens the UCMH-derived power spectrum

bounds by a factor of two. A similar change to the luminosity of all minihalos would weaken the

bounds in the new picture by a factor of 34.

These differences in sensitivity can be understood in the following way. Upper bounds on

minihalo abundance (f in BSA; n or dn/dac here) are always highly sensitive to minihalo signals

8Using Fig. 2.14, β ∼ 105 � A1/2, so the logarithmic dependence of Eqs. (2.25) and (2.26) on A is weak.
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and observational flux constraints, whether we restrict to UCMHs or not; compare Eqs. (2.17)

and (2.20) to BSA Eqs. (26) and (29). However, the sensitivity of a power spectrum bound to

these abundance constraints depends on the types of minihalos that contribute. In the old UCMH

picture, constraints were dominated by halos forming from initial overdensities that correspond to

5σ-6σ fluctuations. These peaks are so far out in the Gaussian tail of the density distribution that

altering their abundance only marginally changes the distribution’s spread9. In the new minihalo

picture, constraints are influenced by the bulk of the peaks, so an alteration to the abundance of

these peaks now changes the spread of the distribution more drastically. We also remark on another

consequence of this difference in statistics: the constraints will no longer be as sensitive to possible

small deviations from Gaussianity that would significantly affect the tails of the distribution [293].

The influence of the peak population on the power spectrum constraint is encoded in the moments

I3/2, J3/2, I1, and J1 of the peak distribution. These are integrals over peak height ν = δ/σ, and their

integrands exhibit most of their support between ν = 2 and ν = 4 (see Appendix A.4). Consequently,

the integrals in Eqs. (2.17) and (2.20) that determine the upper bounds on the power spectrum are

dominated by peaks with amplitudes between 2σ and 4σ, which confirms the difference in statistics

from the old UCMH picture. We can also use this information to find the formation times of the

corresponding halos. The upper bound on A, which parametrizes the matter power spectrum, is

shown in Fig. 2.14 and lies between 3× 102 and 6× 104. The root-mean-squared density variance

of the spiked power spectrum is aA1/2 at scale factor a, implying that the collapse time ac of a

peak with amplitude ν is ac = δc/(νA1/2). It follows that peaks contributing significantly to the

power spectrum constraint would have formed between z = 20 and z = 600, confirming that matter

domination was a valid approximation.

Finally, we remark on a similar constraint that was recently published by Nakama, Suyama,

Kohri, and Hiroshima in Ref. [232] (hereafter NSKH). Unlike previous UCMH works, this work did

not employ the ρ ∝ r−9/4 density profile. Instead, NSKH assumed that minihalos developed NFW

density profiles, and like us, they constrained a delta-spiked power spectrum. Thus, a comparison is

9The (differential) abundance of a density excess δ is proportional to exp
(
− 1

2
δ2/σ2

)
if δ is distributed with spread σ.

If δ/σ is large, then a large change in the abundance—the quantity constrained by observations—corresponds to
a small change in σ, which sets the power spectrum normalization. (This is just an illustration: to be precise, we
should use the cumulative distribution function.)
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Figure 2.14: The constraint on the integrated area A of the spiked matter power spectrum Eq. (2.22).
Note that this is not the primordial power spectrum; see Fig. 2.13 for that constraint.

warranted: despite assuming shallower density profiles, NSKH were able to derive comparable or

stronger constraints on the integrated area A0 (A2 in their paper) of the power spectrum spike.

To model the NFW fitting parameters for their minihalos, NSKH assumed that halo concentrations

c = rvir/rs grow at the rate c ∝ a1.575. However, as we discussed in Sec. 2.3, the inner profiles of

dark matter halos tend to remain stable in time in the absence of disruptive events. Under the

same conditions, the virial radius rvir in physical coordinates grows approximately as a. If the

concentration is growing much faster than a, then this implies that the physical scale radius is

shrinking in time and the halo center is becoming denser. Our simulations suggest that this is not

the case: the concentrations of our minihalos grow as c ∝ a. The rate c ∝ a1.575 was drawn from

a previous work [294] that simulated structure growth from scale-free power spectra. With these

power spectra, halo mergers are common, and these can cause halo physical virial radii rvir to grow

significantly faster than a. This fact may explain the large concentration growth rate: it reflects

rapid growth in virial radius rvir rather than shrinkage in scale radius rs. Since halos that form from

a spiked power spectrum do not experience these mergers, their concentrations grow more slowly.

Their assumption of a faster concentration growth rate likely explains why the constraints in

NSKH are so strong. The annihilation rates within such concentrated minihalos would be greatly

enhanced. However, NSKH also employed the diffuse gamma-ray flux from extragalactic sources,

whereas we, for parity with BSA, assumed only Galactic sources. This could contribute to the

strength of their constraints: as we discuss above, the upper bound on the power spectrum is now

highly sensitive to observational limits on the gamma-ray flux.
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2.6 Conclusion

We have shown that the minihalos that form due to a power spectrum enhancement do not

develop the single-power-law ρ ∝ r−9/4 density profile even when they form by z = 1000 from

extremely rare (6.8σ) peaks. Instead, they develop density profiles with inner power-law indices

between −3/2 and −1, depending on the range of scales that are enhanced. This finding contradicts

the assumption made by previous UCMH work [204, 233–236, 246–250], throwing into question

power spectrum constraints that have been derived from this theory. However, we have also offered

hope. We constructed a new model based on our simulation results for minihalos that form from a

spiked power spectrum, and we calculated a new power spectrum constraint in this model using

Fermi-LAT constraints on gamma rays from WIMP annihilation. The resulting upper bound on

the primordial power spectrum is stronger than an equivalent constraint derived in the old UCMH

picture. It turns out that the drop in signal from each early-forming halo is more than compensated

by the vast increase in the number of halos that contribute to the expected gamma-ray signal.

Our constraint is specialized to a power spectrum enhanced over a narrow range of scales. Such

spiked power spectra have motivations in inflationary phenomenology [27–30, 49, 51, 52] and in

nonstandard thermal histories of the Universe [181–183, 224], but halos forming from these spectra

have not been numerically studied prior to this work and Refs. [226, 267]. Our model for halos

forming from spiked power spectra predicts halo density profiles based on their formation time: the

characteristic density is set by the background density at formation, while the characteristic scale is

set by the spike scale at formation. However, we developed this model based a single power spectrum.

We also neglected any scatter in the density profiles of halos forming at the same time. In Chapter 4,

we will extend this model by quantifying its scatter and its applicability to different power spectra.

Inflationary phenomenology also includes less scale-localized power spectrum boosts such as steps

or bends [27–31, 38–40]. We have found that the halos forming from a stepped power spectrum

develop the same density profiles as later-forming galaxy-scale halos. Consequently, there is already

a vast body of literature on modeling the density profiles of these halos (e.g. [205, 260, 294–318]),

and we expect that these results may be adapted toward constraining steps or bends in the power

spectrum.

Our constraint also employed only gamma rays from WIMP annihilation in Galactic or near-

Galactic sources. We made this restriction in order to facilitate a direct comparison between an
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upper bound on the power spectrum derived in the shallower minihalo picture and an equivalent

bound derived using the results of Ref. [234], which made the same restriction, used UCMHs forming

at z ≥ 1000, and assumed the ρ ∝ r−9/4 profile. As a result, we have left open the possibility of

immediately improving the power spectrum constraints by considering the diffuse annihilation signal

from extragalactic minihalos as Refs. [229, 232] do. We have also not explored the impact of the

shallower density profiles on gravitational probes such as astrometric microlensing [246] and pulsar

timing arrays [245, 249].

Most pressingly, we neglected the influence of disruptive events on the minihalo abundance

and their density profiles. Minihalo-minihalo mergers are one such disruptive event. They can be

counted by means of Press-Schechter theory [291]10 with a sharp k-space filter [288–290], but their

physical impact, especially on minihalos with ρ ∝ r−3/2 inner profiles, is not yet well understood.

Reference [280] simulated controlled halo mergers and observed that successive mergers cause the

inner density profiles of these halos to relax toward shallower forms, an effect that we confirmed.

However, they also found that the merger product can have a higher central density than its

progenitor halos. Moreover, for highly unequal-mass mergers, a remnant of the smaller halo is

expected to survive within the larger one [284].

Figure 2.15 illustrates the possible impact of mergers on the minihalo-derived constraints on

the primordial power spectrum. If we naively assume that minihalos develop NFW profiles with

the same scale parameters rs and ρs, then the shallower inner profiles weaken the power spectrum

bound by roughly a factor of 10. If mergers additionally halve the minihalo count, the constraint

is weakened by another factor of 1.6. We suspect that this latter constraint, depicted as the red

curve in Fig. 2.15, represents a pessimistic estimate of how mergers may weaken the upper bound

on the power spectrum. First, we neglected the increased central densities that can result from

mergers. Second, we assumed that all halo profiles fully relax to NFW form, while Ref. [280] showed

that such relaxation is a gradual process occurring over multiple mergers. Finally, mergers are

relatively rare in spiked power spectra, and even if more than half of the minihalo population is

ultimately destroyed by mergers (not even becoming subhalos), smaller halos, which contribute less

10However, the self-consistency of Press-Schechter merger rates is questioned in Ref. [319]; see also Ref. [320] for a
counterpoint.
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Figure 2.15: Possible upper bounds on the integrated area A0 of a spike in the primordial curvature
power spectrum centered at scale wavenumber ks when mergers are taken into account. The black
curve shows the bound with mergers neglected, which is the same constraint shown in Fig. 2.13. The
blue curve shows the bound if minihalos develop NFW profiles with the same scale parameters rs
and ρs, while the red curve additionally halves the number of halos.

to observational signals, are preferentially destroyed. Hence, we expect that a careful accounting of

mergers will produce a result between the black and red curves of Fig. 2.15.

Disruption of minihalos can also occur by the tidal influence of larger galactic potentials or

by high-speed encounters with objects, such as other substructure or stars, within these galactic

potentials. This topic has been studied in a number of previous works, such as Refs. [321–327], and

a recent overview of such disruptive processes can be found in Ref. [328]. It is also possible to bypass

the issue of galactic disruption by only considering minihalos that have not accreted onto galactic

halos, as Ref. [232] does.

Our goal in this chapter was to show that despite them not possessing the ρ ∝ r−9/4 density

profiles that were previously assumed, minihalos are still able to yield competitive constraints on the

primordial power spectrum. The plethora of minihalos that now contribute to observational signals

counteracts the loss of signal from the rarest of these halos. This finding motivates their further

study, and we have discussed avenues for future work. With a better understanding of disruptive

processes, minihalos can become strong and robust cosmological probes.
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CHAPTER 3:
FORMATION OF MINIHALOS BEFORE THE MATTER-DOMINATED

EPOCH1

3.1 Introduction

While dark matter’s abundance has been established through the study of its gravitational

influence, the identity of its constituent particles remains a major unsolved problem. Experiments

impose two key conditions that dark matter must satisfy.

(1) Dark matter must interact with ordinary matter in some nongravitational way in order to be

produced cosmologically by known mechanisms, and moreover, the details of this interaction

are tightly constrained by the requirement that dark matter achieve its observed abundance of

roughly 26% of the present-day energy density of the Universe [208].

(2) Dark matter’s interactions with ordinary matter must be sufficiently rare to explain why

we have not produced dark matter in particle colliders, such as the Large Hadron Collider

[138–144], or detected its pervasive presence directly [329–331].

A popular solution to these competing requirements, which also has motivations in string theory, is

to propose that dark matter belongs to a hidden sector [146–151]. Instead of interacting directly

with ordinary matter, dark matter interacts with a heavy mediator particle that in turn couples

to ordinary matter. The weight of this mediator suppresses any manifestation of dark matter in

laboratory experiments.

However, for a range of hidden-sector theories, the mediator particle would naturally dominate

the energy density of the Universe during a fraction of the Universe’s first second, leading to an

1Some of the content of this chapter was previously published in Physical Review D as Ref. [206] and is copyright c©
2019 American Physical Society. The original reference is as follows: C. Blanco, M. S. Delos, A. L. Erickcek, and D.
Hooper, Annihilation signatures of hidden sector dark matter within early-forming microhalos, Physical Review D
100, 103010 (2019).
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early matter-dominated era (EMDE) [153, 154]. This EMDE would amplify small-scale density

variations dramatically, potentially causing overdense regions to collapse before the onset of the

last matter-dominated epoch, which began at redshift z ' 3400. In this chapter, we explore the

extent to which regions that collapse during radiation domination can form gravitationally bound

dark matter halos. Structure evolves by particle drift alone when matter is subdominant, and drift

velocities are set during the EMDE. Thus, to ensure correct evolution for the hidden-sector EMDE

cosmology, we begin our analysis during the EMDE.

We consider an era dominated by a heavy particle, Z ′, that decays into radiation with rate ΓZ′ .

Note that ΓZ′ is uniquely associated with the reheat temperature TRH, the temperature at which

early matter domination gives way to radiation.2 In the hidden-sector picture, dark matter froze

out from the thermal plasma before the EMDE began, so only Z ′ and the radiation bath evolve

nontrivially in the cosmological mean. For simplicity, we neglect changes in the composition of the

radiation bath. The average radiation density ρ̄r and Z ′ density ρ̄Z′ evolve according to the system3

H
d(ρ̄Z′a

3)

d ln a
= −ΓZ′ ρ̄Z′a

3

H
d(ρ̄ra

4)

d ln a
= ΓZ′ ρ̄Z′a

4, (3.1)

where H is the Hubble rate at scale factor a. Finally, the trajectories are fixed by picking initial

conditions at some time during the EMDE. The initial radiation density is of little consequence and

may be taken to be zero, but the initial ρ̄Z′ must be numerically tuned to yield a final radiation

density that matches the observed cosmic microwave background temperature.4

We now explore the growth of structure in this scenario. We begin by analytically characterizing

the evolution and collapse of overdense regions. When matter dominates, collapse precipitates bound

halo formation, but this is not necessarily true when radiation dominates. Thus, we subsequently

use numerical simulations to explore the connection between collapse and halo formation.

2TRH is conventionally defined as the temperature at which ΓZ′ = H̃, where H̃ is the Hubble rate (as a function of
temperature) if there were no EMDE.

3Note that H d
d ln a

= d
dt
.

4Up to factors of order unity and powers of the effective number of relativistic degrees of freedom g∗ at reheating,
ρ̄Z′ ∼ Ω

3/4
r ρcrit

√
ΓZ′/H0 a

−3. Here, H0 is the Hubble rate today and Ωr is the radiation density today in units of
the critical density ρcrit. This relation arises from matching the Z′ density to the radiation density at reheating.
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3.2 Analytic growth and collapse

We first explore dark matter structure growth during and after the EMDE, beginning in the

regime where density variations are subdominant. We take ρ̄m to be the average dark matter density.

The system of equations describing the subhorizon growth of the dark matter density contrast

δ ≡ δρm/ρ̄m = δρZ′/ρ̄Z′ , at linear order in δ and neglecting radiation fluctuations, is

H
dδ

d ln a
= −u

a
,

H
du

d ln a
= −Hu− 4πGa (ρ̄Z′+ρ̄m) δ, (3.2)

where u ≡ ikv is the (Fourier-transformed) divergence of the velocity field. The first equation is a

continuity equation, while the second equation combines the Poisson and Euler equations to describe

the response of the velocity field to the matter distribution. For a given initial δi � 1 at scale factor

ai (with Hubble rate Hi), the initial velocity is given by

ui = −Hiaiδi (3.3)

during the EMDE.

In order to explore gravitational collapse, we next consider the nonlinear growth of an overdense

region in a spherically symmetric picture. A sphere initially containing average density contrast δi

and having radius ri evolves in radius r and radial velocity v (in physical, not comoving coordinates)

according to the equations5

H
dr

d ln a
= v

H
dv

d ln a
= −4πG

3
r

[
(ρ̄Z′ + ρ̄m)

(
ari
air

)3

(1 + δi) + 2ρ̄r − 2ρ̄Λ

]
(3.4)

(ρ̄Λ is the dark energy density). The second equation comes from the second Friedmann equation

but can also be understood as Newtonian gravitation with a pressure correction. For a given initial

5If we were to account for changes in the radiation’s composition, it would be necessary to replace 2ρ̄r with ρ̄r + 3P̄r

in Eq. (3.4), where P̄r is the average radiation pressure.
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Figure 3.1: Growth of fractional density contrasts after an EMDE. The blue curve shows the
linear-theory result (valid for δ � 1), while the green curve shows the nonlinear evolution assuming
spherical symmetry, evaluated for the same example initial conditions. Density contrasts grow
rapidly during both the EMDE and the last matter-dominated (MD) epoch and much more slowly
during radiation domination (white region), at least in linear theory. In the nonlinear calculation,
the density contrast collapses (δ →∞) during radiation domination when the linear-theory density
contrast reaches a critical value of about δc = 2.8, a larger value than the standard δc = 1.686 that
holds during matter domination.

radius ri, the initial velocity vi may be set using the Zel’dovich approximation [332] if δi � 1 so that

vi = Hiri(1− δi/3). (3.5)

We may now numerically integrate the full system Eqs. (3.1), (3.2), and (3.4) with the initial

conditions Eqs. (3.3) and (3.5) set during the EMDE. The initial radius r is arbitrary, while the

initial δ � 1 is tuned to yield collapse during radiation domination. Figure 3.1 shows a representative

result. The blue line shows the linear theory prediction for δ, valid only for δ � 1, while the green

line shows the prediction δsc of the spherical collapse model, calculated as

δsc =

(
ari
air

)3

(1 + δi)− 1. (3.6)

We see that despite gravitational potentials being negligible during radiation domination, gravitational

collapse still occurs, but it occurs at a larger linear δ = δc than during matter domination. We

discuss in Appendix B the behavior of δc during radiation domination and present a convenient

fitting function.

Evidently, overdense regions can collapse during radiation domination. However, where radiation

dominates, matter particles cannot experience net forces, so this collapse must occur by drift alone.
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Dark matter particles were attracted toward overdense regions during the EMDE, and they continue

drifting in the same directions after Z ′ domination gives way to radiation.6. While these drifting

particles may eventually converge, producing a collapse event, it is not clear that they can form

bound structures. To determine when a halo can form, we turn to numerical simulations.

3.3 Numerical simulations

3.3.1 Simulation methods

We use the cosmological simulation code GADGET-2 [274] to study gravitational collapse during

radiation domination. We modified the code to include both radiation and a decaying Z ′ matter

component. These components are modeled at the homogeneous level by adding corresponding

terms to the Hubble rate appearing in the time integrands used for particle drifts and gravitational

kicks. Meanwhile, the clustering capacity of the decaying Z ′ component is modeled by scaling the

mass m of each simulation particle as

m =
ρ̄Z′ + ρ̄m

ρ̄m
m0, (3.7)

where m0 is the particle mass at late times, as in Refs. [333, 334]. Effectively, each simulation

particle is representing Z ′ particles and dark matter particles together. As a technical matter, this

modification is also implemented by modifying a time integral; in particular, the time integrand

used for gravitational kicks is scaled by m/m0, as in Ref. [335]. This implementation is necessary

to maintain accuracy near reheating, when the particle mass changes rapidly over a single time

integration step. Figure 3.2 demonstrates the accuracy of this modification. A periodic box with

small initial density fluctuations is simulated through reheating and matter-radiation equality, and

the growth of the square root of the (dimensionless) power spectrum in the simulation, measured at

a particular wavenumber, is compared to the growth of δ in linear theory [Eq. (3.2)]. The two match

closely as long as the power spectrum (and hence δ) remain inside the linear regime.

6In fact, this observation readily explains the logarithmic growth of small density contrasts during radiation dom-
ination. Comoving velocities decay as a−2, so the comoving displacement s of a particle is proportional to∫
a−2dt =

∫
a−2da/(aH) ∝

∫
da/a since H ∝ a−2 during radiation domination. Thus, s ∝ ln a, and since δ = −∇ · s

at linear order, δ ∝ ln a.
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Figure 3.2: Demonstration of our modification to GADGET-2 to represent an EMDE. We simulated
a periodic box with small Gaussian initial density variations beginning during the EMDE, and
we plot the evolution of the dimensionless power spectrum P evaluated at a fixed wavenumber.
The simulated growth of density contrasts (solid line), which are proportional to

√
P, matches the

linear-theory prediction for δ (dashed line).

3.3.2 Simulating collapse during radiation domination

We now use our custom simulation code to study whether collapsed regions can become bound

during the radiation-dominated era. For simplicity, we study the collapse of individual density peaks

instead of full Gaussian fields. We fix an EMDE cosmology with TRH = 22 MeV, corresponding to

radiation domination beginning at the scale factor a = 10−11 (where a = 1 today). To generate

density peaks, we consider a dimensionless power spectrum that scales as

P(k) ∝ ln(k/k0)2 (3.8)

with k0 = 4×106 Mpc−1; that is, we consider scales that entered the horizon during a prior period of

radiation domination. We now draw individual proto-halo density peaks from the Gaussian-filtered

power spectrum

Pf(k) = P(k) exp(−R2
f k

2) (3.9)

using the density profiles of Ref. [269] with smoothing scale Rf = 1.5× 10−11 Mpc. To add some

realism to this otherwise smooth density peak, we also superpose small-scale Gaussian noise drawn

from the oppositely filtered power spectrum

Pcf(k) = P(k)
[
1− exp(−R2

f k
2)
]
. (3.10)
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Figure 3.3: Formation of a bound halo during radiation domination. The solid lines show the
spherically averaged dark matter density profile at four different times, all during radiation domination,
as simulated from an isolated initial density excess. The dashed lines show the density of the
homogeneous radiation background at the same times. We plot all density values in units of the
background dark matter density ρ̄m. The spherical collapse model described in Sec. 3.2 predicts
that the overdense region collapses at zc = 3.9× 107, but a bound structure does not form at that
time. Instead, the dark matter density grows slowly until it locally exceeds the radiation density, at
redshift zrc = 4.2× 105. At that time, still long before matter-radiation equality, a bound halo forms
(black solid line). The minimum radius plotted at each redshift is set to contain 100 simulation
particles.

Finally, we impose vacuum boundary conditions at the comoving radius 7× 10−10 Mpc and begin

the simulation at a = 3× 10−13.

We tested a variety of initial peak density profiles, three-dimensional shapes, and amplitudes

(corresponding to collapse times). The general outcome for peaks collapsing deep in radiation

domination is that after collapse, the structure develops a shallow cusp with d ln ρ/d ln r ' −1.

Eventually, this structure recollapses to form a bound halo, and this process happens at roughly the

time of local matter-radiation equality. That is, recollapse occurs when the matter density within

the structure exceeds the homogeneous radiation density, typically around redshift z ∼ (2− 5)× 105.

The characteristic density of the resulting halo is determined by the recollapse time, rather than the

initial collapse. Figure 3.3 illustrates this process using one of our simulations.

Figures 3.4 and 3.5 show the density profiles arising from a variety of initial peaks after collapse

but before recollapse. We find that the size of the collapsed structure is proportional to the size of

the initial peak, or equivalently the smoothing scale Rf , while the density of the structure scales as

ln(a/ac) where ac is the scale factor of collapse predicted by the spherical collapse model. Shape

parameters describing the three-dimensional shape and density profile of the initial peak, on the
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Figure 3.4: Dependence of the collapsed structure during radiation domination on properties of the
initial peak. The larger and smaller peaks differ by a factor of 2 in their initial size (measured by
|δ/∇2δ|1/2 at the peak), which roughly matches the difference in the size of the density profile after
collapse. More and less ellipsoidal peaks vary derivatives ∂i∂jδ at the peak while holding ∇2δ fixed.
Evidently, three-dimensional shape has minimal effect. The shallower peak employs a smaller k0 in
the power spectrum of Eq. (3.8). All peaks have the same filtering scale.

other hand, appear to have minimal effect.7 We found the expression

ρ(r) =

[
A ln

(
a

ac

)
+B

]
ρ̄m

Rf
r
,

A ' 8.4, B ' 12.4.

(3.11)

to provide a reasonable fit to this density profile.8 If we now posit that recollapse occurs when the

mean matter density within Rf exceeds the radiation density, then this leads to the condition

[
A ln

(
arc

ac

)
+B

]
arc =

2

3
aeq (3.12)

for the recollapse scale factor arc, where aeq is the scale factor of matter-radiation equality. Equa-

tion (3.12) turns out to be approximately correct in predicting arc in the simulations. We note that

7The density profile of the initial peak has minimal effect as long as it remains self-similar, as in a nearly scale-invariant
power spectrum. Peaks drawn from a small range of k-modes (rather than associated with power at all scales) were
found to develop constant-density cores in radiation domination instead of r−1 cusps.

8We suspect it would be feasible to derive the density profile by using an ellipsoidal collapse model before reheating
and letting all particles freely drift afterward. With the removal of gravitation, a Lagrangian map (between initial and
final particle positions) should remain only two-valued. However, ellipsoidal collapse is necessary. This calculation
carried out under spherical symmetry yields ρ ∝ r−2, which is steeper than the profile we obtained in simulations.
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Figure 3.5: Dependence of the collapsed structure during radiation domination on the collapse
time. We depict the density profiles of collapsed structures arising from peaks that collapse at scale
factors 2.6× 10−8, 2.5× 10−9, and 1.0× 10−6, respectively, as predicted by the spherical collapse
model. (The last collapse is later than the time of the plot, but due to the ellipsoidal shape, one axis
collapses significantly earlier than the spherical collapse model predicts.) The difference between the
three structures is fully explained by their logarithmic growth over time as per Eq. (3.11).

if Eq. (3.12) predicts arc < ac, then the collapsed region is immediately dense enough to recollapse.

In this case, a bound structure simply forms at scale factor ac.

We remark that structures collapsing too soon after reheating did not recollapse at all, owing

to the high particle velocities induced by the collapse. The precise threshold for this effect was

not explored. At the other extreme, highly spherically symmetric peaks can collapse much deeper

into radiation domination owing to their ability to concentrate infalling matter into a much smaller

region. Such peaks are very rare, however.

While simulations of isolated density peaks allow for easy control of variables, they recover

poorly the detailed structure of halos arising from a nearly scale-invariant power spectrum. This

structure is fundamentally linked to halo mergers. For this reason, we do not attempt to measure

the characteristic density (or concentration parameter) of the halos that arose in our simulations.

Additionally, the recollapse time cannot be precisely measured because we did not develop an exact

definition for this quantity. Future work should carry out simulations of full density fields in order

to test Eq. (3.12) and determine the precise connection between a halo’s internal structure and its

recollapse time.
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3.4 Conclusion

For a wide range of parameters, hidden-sector dark matter theories predict an EMDE that could

boost small-scale dark matter density variations dramatically. In these cosmologies, overdense regions

could begin to collapse prior to the last matter-dominated epoch. In order to estimate the properties

of the minihalos that arise in these scenarios, we studied the behavior of regions sufficiently overdense

that they collapse during the radiation-dominated epoch. The collapse time of an overdense region

can be predicted using a spherical collapse model even during radiation domination, and we supplied

in Appendix B a fitting function that relates this spherical collapse to linear theory. The critical

linear density contrast δc is larger than its value during matter domination, rising as high as about 3.

However, during radiation domination, collapse does not directly correlate with the formation

of a bound structure. To address this ambiguity, we used a customized version of the Gadget-2

simulation code to simulate the collapse of isolated density peaks during radiation domination. We

found that regions become gravitationally bound when their matter density locally exceeds the

radiation density. Additionally, we found a fitting function that describes the structure of a collapsed

(but not bound) region as a function of its collapse time. Using this fit, it is straightforward to

predict when the matter density locally exceeds the radiation density, and thus when a collapsed

structure recollapses to become gravitationally bound. Our fitting function successfully predicts this

recollapse time. These results were used in Ref. [206] to develop new observational constraints on

hidden-sector dark matter theories.

Further research is necessary to fully understand the properties of halos that form during radiation

domination. We simulated only isolated overdense regions, but halos that arise from density variations

at all scales are fundamentally shaped by mergers with other halos, which our simulations do not

represent. Full Gaussian density fields must be simulated in order to precisely study these halos.

Another valuable research avenue would be to study halo formation during the EMDE. Halos

that arise during an EMDE would largely evaporate as the Z ′ particle decays, leaving the dark

matter that resided within them gravitationally heated [206]. This effect could suppress subsequent

structure formation. However, since only a fraction of the dark matter is gravitationally heated, the

extent of this suppression is unclear. Numerical simulations could resolve this uncertainty.
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CHAPTER 4:
PREDICTING THE DENSITY PROFILES OF THE FIRST HALOS1

4.1 Introduction

Decades of work have been devoted to understanding the halos that form by the gravitational

collapse of collisionless dark matter. In the cold dark matter (CDM) model, N -body simulations have

demonstrated that the radial density profiles ρ(r) of these halos are well described by a remarkably

universal form, known as the Navarro-Frenk-White (NFW) profile [205, 260], which is a double power

law that transitions from ρ ∝ r−1 at small radii to ρ ∝ r−3 at large radii. This profile has received

only minor corrections since its introduction (e.g., Ref. [337]). In the CDM picture, all halos form by

hierarchical clustering of smaller halos, and the NFW profile appears to be the generic consequence.

CDM represents an idealized scenario, however. In reality, dark matter particles are expected

to have a nonzero temperature, and the corresponding random particle motions wash out density

fluctuations smaller than a characteristic free-streaming scale. The first halos form by direct collapse

of overdense regions at this scale, and N -body simulations with sufficient resolution show that

these halos possess a markedly different density profile that asymptotes to ρ ∝ r−3/2 at small radii

[261–266]. This profile is stable; it does not relax to the NFW profile, at least in the absence of halo

mergers.

The first halos subsequently merge to produce successively larger halos, and Refs. [262, 280] find

that these mergers gradually drive the halos’ density profiles toward the NFW form. As these works

argue, the shallowing of the inner density profile is likely a consequence of violent relaxation [338]

during merger events. However, there are multiple lines of evidence suggesting that such relaxation

does not erase the memory of prior states. For nearly equal-mass mergers, the density profile of the

1This chapter was previously published in Physical Review D as Ref. [336] and is copyright c© 2019 American Physical
Society. The original reference is as follows: M. S. Delos, M. Bruff, and A. L. Erickcek, Predicting the density profiles
of the first halos, Physical Review D 100, 023523 (2019).
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merger remnant depends sensitively on the profiles of its progenitors [262, 266]. Successive mergers

either raise or leave unaltered a halo’s characteristic density [262, 280, 339]; since the first halos are

the densest, this trend preserves them. Finally, for highly unequal-mass mergers, the smaller halo is

generally expected to survive as a subhalo of the larger [284]. The smaller halo’s central density

profile may even be mostly unaffected by the merger [340–342].

In this way, it is broadly plausible that the dense central regions of the first halos survive the

hierarchical clustering process. These halos, forming during a denser epoch, should be the densest

dark matter objects in the Universe, and such density leads to observational prospects. Signals from

dark matter annihilation are dramatically enhanced by the high density within these halos (e.g.,

Refs. [343–348]). Gravitational signatures, whether through microlensing (e.g., Refs. [349–352]),

timing delays (e.g., Ref. [353]), or stellar dynamics (e.g., Refs. [200, 201, 354]), are also enhanced.

Meanwhile, since these halos form by direct collapse from overdense patches, they carry sensitive

information about the primordial density field on scales that are inaccessible to other probes. Our

goal is to develop a model that extracts this information; we aim to connect the properties of the

first halos to the statistics of the primordial matter density field.

The matter density field is intimately connected to some of the most fundamental questions

of cosmology. The power spectrum P(k), which quantifies the power in density fluctuations at

scale wave number k, has been precisely measured at scales above approximately 1 Mpc using the

cosmic microwave background [251] and the Lyman-α forest [15]. However, with a few exceptions

[19, 252], it is largely unconstrained at submegaparsec scales. Since density fluctuations are thought

to have been seeded during inflation, P(k) serves as a valuable probe of inflationary models [4]. The

power spectrum is also sensitive to the thermal history of the Universe after inflation. An early

matter-dominated era (EMDE), driven by an unstable heavy relic, would amplify small-scale density

fluctuations [181–183, 224], as would a period of domination by a fast-rolling scalar field [191]. The

power spectrum P(k) thereby supplies one of the few windows into the Universe prior to big bang

nucleosynthesis. Separately, its sensitivity to the free-streaming scale makes it a probe of the nature

of dark matter.

Numerous previous works have explored the prospects of using the first dark matter halos to

probe the small-scale primordial power spectrum [232–236, 246–249]. However, most treatments

assumed that these halos, if they form sufficiently early, possess a particularly compact ρ ∝ r−9/4
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density profile [202] derived from self-similar theory [203]. References [267] and [226] used N -body

simulations to show that this profile does not arise from a realistic formation scenario. In Chapter 2,

we showed that, despite possessing shallower ρ ∝ r−3/2 density profiles, the first halos can still supply

competitive constraints on the power spectrum through nondetection of their observable signals. In

that work, we used scaling arguments to model the population of the first halos given a particular

family of power spectra. Each peak in the density field was mapped to a collapsed halo at later time.

Our present work represents a natural extension of that model to arbitrary power spectra. It is

based on the notion that the density profile of a halo forming by direct collapse is uniquely related

to the properties of its precursor density peak. Numerous prior works have explored the problem of

explaining a halo’s density profile in terms of the structure of the density peak whence it collapsed.

In work that pioneered the so-called spherical infall model, Refs. [355, 356] approximated the density

profile of a collapsed halo by employing the simplifying assumption that particle orbits are unaltered

after accretion. Subsequent works extended this model by including the contraction of orbiting

material due to new accretion [203, 253, 357–362], relaxing the assumption of spherical symmetry

[363, 364], and modeling nonradial motions [282, 365–370]. Because of the difficult, nonlinear nature

of the matter infall problem, every treatment employs simplifying assumptions. Exact solutions only

exist for the self-similar case [203, 253, 363, 364], in which the primordial mass excess is a power

law in radius. More general treatments employ Ansätze related to angular momenta and orbital

contraction. As an alternative to tracking each orbit, other works have employed an Ansatz related

to virialization [371, 372].

Whereas spherical infall models relate halo density profiles to the precursor mass distribution, a

complementary paradigm empirically studies the distribution of halo density profiles as a function

of cosmology and redshift. In this paradigm, cosmological N -body simulations are used to tune a

parametric model that describes the density profile of a halo as a function of its mass, and models

built in this paradigm are known as concentration-mass relations.2 The distribution of halo masses

can be subsequently obtained using Press-Schechter theory [287, 373, 374], so these models can

predict the full population of halos and their density profiles. Concentration-mass relations have been

2The concentration is a parameter in the NFW profile (and extended to other profiles) describing how centrally
distributed the halo’s mass is.
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studied extensively. The simplest models describe the halo distribution in a particular cosmological

scenario and at a particular time of interest [295, 299–305, 310, 312, 317, 318, 375–380]. Other works

have framed a halo’s density profile in terms of its age or assembly history [205, 260, 279, 294, 296–

298, 306, 309, 313, 315, 381, 382], and progress has been made in isolating the physical variables

most directly relevant for predicting density profiles [307, 314, 316, 383]. Nevertheless, due to

their empirical nature, concentration-mass relations do not readily extend beyond the cosmological

scenarios, times, and halo-mass ranges over which they are tuned.

Broadly, spherical infall models attempt to explain the structures of halos from first principles,

while concentration-mass relations endeavor to predict these structures pragmatically. Our analysis

constitutes a hybrid between these two procedures that is specialized to the first halos. Forming by

direct collapse, these halos are well suited to the spherical infall description. At the smallest radii,

we use ellipsoidal collapse arguments [373, 374, 384] to predict the coefficient of the ρ ∝ r−3/2 inner

profile. Beyond the inner asymptote, we employ the simplest spherical infall models to predict the

larger profile, parametrized by the maximum circular velocity vmax and the radius rmax at which

it is attained [385]. By building from such first-principles descriptions, our predictive models are

valid in any cosmological scenario; we demonstrate this by validating and tuning the models using

six high-resolution cosmological N -body simulations carried out in wildly disparate cosmological

scenarios. Our models nominally predict a halo’s density profile from the density peak whence it

collapsed. However, modulo the influence of halo mergers (which we discuss), the statistics of peaks

[269] may be applied to thereby predict the full halo population at a given time.

4.2 Simulations

We first build a halo catalogue on which to test our model. For this purpose, we simulated six

different simulation boxes drawn from different initial power spectra. These power spectra are shown

in Fig. 4.1. Three of these power spectra are constructed as “spikes” centered at the scale ks = 6.8

kpc−1 with the form

P(k) =
A√
2πw

exp

[
−1

2

(
ln(k/ks)

w

)2
]

(4.1)

for different values of w. These spectra are primarily intended as artificial test beds for halo formation,

but they do have qualitative motivations in inflationary phenomenology [27–30, 49, 51, 52, 73, 76, 78].

A fourth power spectrum represents the impact of an EMDE with reheat temperature TRH = 100
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Figure 4.1: Top: The (linear-theory) dimensionless matter power spectra of our six simulations
during matter domination. In linear theory, P(k, a) ∝ a2 when matter dominates, which motivates
the y-axis scaling (with a = 1 today). Bottom: The same power spectra, but each is scaled to its
density variance and characteristic correlation length (see the text). The shaded region marks the
range of box sizes for the six simulations: larger modes (smaller k) have wavelengths longer than the
simulation box, so they are not sampled.

MeV and ratio kcut/kRH = 20 between the free-streaming cutoff and the largest scale affected by the

EMDE (see Ref. [224]). Finally, the last two power spectra include only the free-streaming cutoffs

associated with cold dark matter with mass mχ = 100 GeV and kinetic decoupling temperature

Tkd = 33 MeV (corresponding to a typical weakly interacting massive particle [283]) and warm dark

matter (WDM)3 with mass mχ = 3.5 keV (close to lower bounds from the Lyman-α forest [387]),

respectively. The particular parameter choices for these power spectra are intended to represent very

different cosmological scenarios so that we can test the broad applicability of our models.

We generate the three spiked power spectra from Eq. (4.1) at a starting redshift of z = 104,

3For WDM, we also take the dark matter particle to be fermionic with 2 degrees of freedom (so, gX = 1.5 in Ref. [386]).

63



normalizing A = 2× 10−7 at this time in order to effect abundant halo formation by z ∼ 100. To

generate the latter three power spectra, we begin with a primordial curvature power spectrum of

amplitude As = 2.142 × 10−9 and spectral index ns = 0.9667 [16]. We then use the Boltzmann

solver Camb Sources [270, 271] to produce a matter power spectrum at z = 500 in a scenario

with no thermal dark matter motion. Next, we apply transfer functions from Refs. [224], [388],

and [386] to create, respectively, the EMDE, CDM, and WDM spectra. Finally, we use linear theory

[273] to evolve these power spectra to their initial redshifts. Note that we include radiation in our

simulations, and the linear evolution accounts for this; see Chapter 2 for details.4 We also include a

cosmological constant, although it is of minimal relevance.

The starting redshift zinit, ending redshift zfinal, and periodic box size of each simulation are listed

in Table 4.1. Also listed are the rms density variance σ0 and comoving characteristic correlation

length R∗ associated with each power spectrum in linear theory. These spectral parameters are

defined as [269]

σj =

(∫ ∞

0

dk

k
P(k)k2j

)1/2

(4.2)

R∗ =
√

3
σ1

σ2
. (4.3)

To illustrate the significance of these quantities, Fig. 4.1 also shows the correspondingly rescaled

power spectra. This rescaling is useful because it factors out the scale differences between the

spectra, leaving only their shapes. For this reason, we will use these spectral parameters as our units.

The mass unit is munit ≡ ρ̄0R
3
∗, where ρ̄0 is the background matter density today. Meanwhile, the

physical distance unit is runit ≡ [a/σ0(a)]R∗, where σ0(a) is evaluated using linear theory during

matter domination (so σ0 ∝ a) and a = 1 today. For each simulation, the ending redshift is tuned

so that σ0 ∼ 3 (in linear theory) at simulation termination, and the comoving box size is tuned to

be roughly 30 to 80 times R∗. The initial redshift is chosen so that the largest fractional density

excesses δ ≡ (ρ− ρ̄)/ρ̄ are of order 0.2 or smaller.

For each simulation, we draw a random density field from the matter power spectrum at zinit

4Modes that were subhorizon during an EMDE grow in an altered way during radiation domination [224], and we
modify the linear growth function for this scenario accordingly.
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Table 4.1: The simulation list with basic parameters. Also listed are σ0, the rms density variance,
and R∗, the comoving characteristic correlation length, both calculated in linear theory. When
matter dominates, σ(a) ∝ a, which motivates the scaling in this column (with a = 1 today).

Simulation zinit zfinal Box (kpc) σ0(a)/a R∗ (kpc)

w = 0.1 104 50 7.4 164 0.25
w = 0.3 104 50 7.4 164 0.19
w = 0.5 104 50 7.4 164 0.12
EMDE 3× 104 100 1.5× 10−3 330 4.1× 10−5

100 GeV 500 9 0.15 30 1.9× 10−3

3.5 keV 150 2 4.4× 103 7.6 66

and generate initial conditions using the Zel’dovich approximation modified to account for radiation

as described in Chapter 2.5 Finally, we carry out the simulations using a version of the cosmological

simulation code Gadget-2 [274, 275] that we modified to include the effects of radiation (see

Chapter 2). All simulations employed 10243 particles and a comoving force softening length set at

3% of the initial interparticle spacing (with forces becoming non-Newtonian at 2.8 times this length).

Figure 4.2 shows the initial and final density fields for three of these simulations. This sample

illustrates the characteristic differences between the density fields and halo populations that result

from the different power spectra. The w = 0.1 spectrum produces fluctuations only on a characteristic

scale, and the resulting halo population is relatively uniform in size and separation. Meanwhile,

the w = 0.5 spectrum produces fluctuations on a wider range of scales, yielding very small halos as

well as larger halo clusters and voids. Finally, the 100 GeV power spectrum includes fluctuations at

scales up to and exceeding the box size.6 Accordingly, the bulk of the halos in the box reside within

a few clusters, and some halos are growing exceedingly large.

At the final redshift of each simulation, we use the Rockstar halo finder [277] to identify every

halo with mass larger than a cutoff Mcut = (4π/3)k−3
maxρ̄0, where kmax is the wave number k at which

P(k) is maximized. This cutoff is intended to exclude most of the artificial fragments [389, 390]

that are normally expected to appear in simulations with a small-scale cutoff in density fluctuations.

5For the EMDE, the methods in Chapter 2 were adapted to the post-EMDE growth function.
6In fact, the entire boxes of the 100 GeV and 3.5 keV simulations should be collapsing by the final redshift, a fact that
cannot be reflected in these simulations. Thus, we do not expect these two simulations to accurately capture the
large-scale dynamics; for example, halo mergers are probably under-represented. We focus on understanding the
halos that form by direct collapse from peaks in the density field, so we do not expect this shortcoming to impact our
main results.
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Figure 4.2: The projected initial (top) and final (bottom) density fields for the w = 0.1 (left), w = 0.5
(middle), and mχ = 100 GeV (right) simulations. The color scale is logarithmic; lighter is denser.

Roughly speaking, fluctuations at the scale kmax are the first to collapse, so we do not expect to

find many real halos at smaller scales. Table 4.2 lists the number Nhalo of such halos found in each

simulation.

Next, we wish to associate each halo with the density peak whence it collapsed. To do this, we

use Rockstar to generate halo catalogues at intervals of roughly 5% in the scale factor, and we

use the Consistent Trees merger tree code [391] to improve the consistency of halo tracking

through time. Starting at the final redshift, we trace each halo back to its formation time, defined

as the time when its mass first exceeded Mcut. In case of a merger, we follow the larger progenitor.

We then identify all particles in the halo at its formation time, find their positions in the initial

particle grid at zinit, and compute the center of mass xCM and rms spread rCM of these positions.

Finally, we consider the initial grid δ(x) of fractional density contrasts and find the largest value of

δ(x) within a sphere of radius rCM about xCM . If this maximum is also a local maximum in δ(x) (a

condition that could fail if the maximum lies at the sphere’s boundary), we take it to be the initial
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Table 4.2: For each simulation, we list the halo count Nhalo above the mass cutoff at the final redshift,
the number of peaks Npeak in the linear density field, and the number Nmatch of successful halo-peak
matches. Of these matches, also listed are the number NA with density profiles resolved at small
radii, the number Nr with rmax < rvir, and the subsets N<3MM

A and N<3MM
r that also underwent

fewer than three major mergers.
Simulation Nhalo Npeak Nmatch NA N<3MM

A Nr N<3MM
r

w = 0.1 696 439 411 408 350 404 347
w = 0.3 801 933 565 561 481 537 457
w = 0.5 1011 3896 795 790 683 738 634
EMDE 610 730 424 416 366 388 339
100 GeV 216 6108 157 153 141 82 73
3.5 keV 581 4401 463 455 430 322 303

density peak for this halo. Otherwise, we discard the halo from further consideration, suspecting it

to be an artificial fragment.7 Moreover, when this procedure associates multiple halos in the final

box with the same initial peak, we discard all but the most massive halo. Table 4.2 lists both the

number Npeak of peaks in the initial density field and the number Nmatch of peak-halo identifications

made through this procedure.

To test our models, we must still make further cuts to the halo-peak population. For the

small-radius asymptote of the density profile (Sec. 4.3), we consider the subset of our peak-matched

halos that have well-resolved inner density profiles8. The number NA of such halos in each simulation

is listed in Table 4.2. Moreover, Ref. [280] found that successive major mergers alter the inner

asymptote of a halo’s density profile, and we confirm this effect in Sec. 4.5.2. We aim to model the

initial density profile of a halo before it undergoes any disruptive dynamics, leaving a treatment

of mergers for future work.9 Thus, we also restrict our sample to halos that underwent fewer than

three major mergers, which we define to be mergers between two halos with a mass ratio smaller

than 3. The number N<3MM
A of these halos is also listed in Table 4.2. The particular threshold of

three major mergers is chosen as a compromise between minimizing the impact of mergers on our

7We explored the alternative procedure of following the density gradient to a local maximum, but the only consequence
was the introduction of unphysically distant halo-peak associations.

8In particular, we require that at least 100 particles reside within the simulation softening length. Otherwise, the
central density is small, usually implying that the density profile was not centered on the halo’s cusp, which is only
true of a handful of halos not found by Rockstar but filled in by Consistent Trees. Due to the minuscule
fraction of halos affected, we did not make further efforts to find the true center.

9We prefer to exclude the impact of mergers in this work because mergers are a continuing process, so their impact is
sensitive to the arbitrarily chosen simulation termination redshift.
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results and maximizing the sample of halos from which our results are drawn. As we will see in

Sec. 4.5.2, the first two major mergers only marginally alter halo density profiles.

Meanwhile, for the larger-radius density profile (Sec. 4.4), we consider the subset of our peak-

matched halos that have rmax, the radius at which the circular velocity is maximized, inside their

virial radius, defined as the radius rvir enclosing average density 200 times the background.10 The

number Nr of these halos is listed for each simulation in Table 4.2. Mergers only minimally alter

rmax (see Sec. 4.5.2), so when testing models for rmax, it is not necessary to restrict to halos that

underwent few mergers. However, mergers can significantly alter the mass M(rmax) enclosed within

rmax (or equivalently vmax), so to test our mass predictions, we restrict the sample to the subset

N<3MM
r of halos that underwent fewer than three major mergers. This number is also listed in

Table 4.2. Altogether, it is evident from Table 4.2 that only a small fraction of the full peak and

halo populations is used to test our models. Section 4.5 explores the impact of these restrictions by

returning to the full peak and halo populations.

We now have a catalogue that matches peaks in an initial density field to collapsed halos at a

much later time. All that remains is to collect the halo density profiles and the parameters of each

peak, and we detail these processes in Appendixes C.1 and C.2, respectively. With these data, we

are now prepared to test any model relating the structure of a dark matter halo to its precursor

density peak. In the following sections, we develop such a model.

4.3 Density profile at small radii

We first study the coefficients A of the ρ = Ar−3/2 asymptotes of the density profiles of the first

halos. It is of prime importance to accurately predict the density profiles in this regime because these

radii source the bulk of the prospective signal from dark matter annihilation, and this remains true

even if these halos relax toward ρ ∝ r−1 profiles due to mergers. Moreover, there is another reason

to study small radii separately: the ρ ∝ r−3/2 inner density profile is established almost immediately

after collapse. To illustrate this fact, we simulate11 the collapse of the isolated density peak shown in

10The requirement rmax < rvir culls a significant fraction of the halo population in the 100 GeV simulation, but this is
not a serious concern. It turns out that the models we discuss predict very large rmax for these halos as well, and
rmax > rvir only implies that the halo’s outermost profile has not yet steepened to the point that d lnM/d ln r < 1.

11This simulation employed about 9 million particles in a comoving vacuum-bounded sphere of radius 1.5 kpc. The
starting redshift was z = 106.
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Figure 4.3: The radial profile of a density peak drawn from the w = 0.3 power spectrum at redshift
z = 106. The peak is ellipsoidal, and the shading indicates the variation in the profile along different
axes. The vertical line marks qmax computed using the turnaround model (Sec. 4.4.1).

Fig. 4.3. This peak represents a typical 3σ peak drawn from the w = 0.3 power spectrum using the

statistics of peaks as described in Ref. [269]. The shallowing of this profile toward r = 0 is associated

with the absence of small-scale fluctuations, and this is the single feature common to density peaks

drawn from all of the power spectra we are studying. Indeed, it has been suggested that this feature

is responsible for the development of the ρ ∝ r−3/2 profile [261].

Figure 4.4 shows the halo resulting from this initial peak in the moments after collapse. We also

compute the expected collapse time from the initial peak using both the spherical collapse model,

δ(asc) = 1.686, and the ellipsoidal collapse model described in Ref. [373]. The redshifts zsc and zec

of spherical and ellipsoidal collapse, respectively, are indicated in Fig. 4.4. The critical observation

is that the ρ ∝ r−3/2 asymptote of the density profile develops almost immediately after collapse,

matching closely the late-time density profile as early as a ' 1.15aec. Subsequently, the profile

grows outward in radius alone, gradually steepening as accretion of new material slows. The interval

∆a/a ' 0.15 over which the profile develops is not arbitrary. The characteristic dynamical time

∆t =
√

3π/(16Gρ) [392] of a virialized region with density 200 times the background is ∆t = 0.16/H,

where H is the Hubble rate. This interval corresponds to ∆a/a = 0.16, implying that the inner

density profile develops over a single dynamical time interval.

4.3.1 Spherical collapse

The rapid development of a halo’s inner ρ = Ar−3/2 profile implies that the coefficient A can

only be influenced by the immediate neighborhood of the precursor density peak. To make this
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argument precise, we define12

δ̃(x) ≡ δ(x, a)/a, (4.4)

where δ(x, a) is evaluated using linear theory during matter domination (when δ ∝ a). Here, x

is a comoving coordinate, and we define a = 1 today. We now claim that the inner ρ ∝ r−3/2

asymptote is only sensitive to the local properties δ̃ and ∂i∂j δ̃ of the precursor density peak. If we

neglect deviations from spherical symmetry, the peak reduces to two parameters: its amplitude δ̃

and curvature |∇2δ̃|. During matter domination, spherical collapse theory implies that asc ∝ δ̃−1.

Meanwhile, |∇2δ̃| defines a comoving length scale qpk ≡ (δ̃/|∇2δ̃|)1/2 associated with the peak. At the

time of collapse, this comoving length corresponds to the physical length scale ascqpk ∝ (δ̃|∇2δ̃|)−1/2.

There is also a physical density scale ρ̄0a
−3
sc ∝ ρ̄0δ̃

3, i.e., the cosmological background density at

collapse. If these are the only scales, then up to a constant coefficient, there is a unique prediction

for the coefficient A of the ρ = Ar−3/2 asymptote of the density profile,

A = αρ̄0δ
9/4|∇2δ|−3/4, (4.5)

where α is a proportionality constant. We omit the tildes in Eq. (4.5), but all quantities related

to the linear density field are understood to be evaluated on δ̃(x). This convention applies to the

remainder of this work. The parameter α must be calibrated by simulations, but this calibration is

only necessary once; it should be the same for any power spectrum.

We test this model on the N<3MM
A peak-matched halos in each simulation that have well-resolved

inner density profiles and underwent fewer than three major mergers (see Sec. 4.2). For these halos,

Fig. 4.5 plots the left-hand side against the right-hand side of Eq. (4.5) in order to test the model.

Evidently, our model works well for how simple it is, predicting the asymptotes with reasonable

success in all six simulations. There does, however, appear to be a correlated effect wherein halos

with the densest predicted asymptotes tend to exceed that prediction, and vice versa at the less

dense end. In fact, this effect is caused by the assumption of spherical collapse. Peaks of smaller

12After this section, we will omit the tilde, and any quantity related to the linear density field should be understood
to be evaluated on the scaled linear density field δ̃(x) unless otherwise specified.
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Figure 4.6: A comparison of the scatter from the two asymptote models. For each model, we plot a
histogram of the coefficient α between the asymptote A and its model prediction, scaled to the mean
coefficient for all halos. Vertical lines mark 1σ deviations from the mean, computed in log space.

amplitude tend to be less spherical, thereby collapsing later and forming less dense halos than their

amplitude would suggest. We next account for this effect.

4.3.2 Ellipsoidal collapse

Equation (4.5) neglects deviations from spherical symmetry. However, it can be immediately

generalized in the following way. Since A ∝ a
−3/2
sc , we can use the theory of ellipsoidal collapse

[373, 374, 384] to predict how the three-dimensional shape of a peak alters its collapse time. In

particular, ellipsoidal collapse occurs later than spherical collapse by a factor fec(e, p) ≡ aec/asc,

which is a function of the ellipticity e and prolateness p of the gravitational potential φ in the vicinity

of the peak (see Appendix C.2 for definitions). To compute fec, we use the approximation [373]

fec(e, p) = 1 + 0.47
[
5(e2 − p|p|)f2

ec(e, p)
]0.615

. (4.6)

Accounting for ellipsoidal collapse,

A = αρ̄0δ
9/4|∇2δ|−3/4f−3/2

ec (e, p), (4.7)

where α is a proportionality constant.

Figure 4.5 compares the predicted asymptotes in the ellipsoidal collapse model to their measured

values. The correlated scatter associated with the spherical model is no longer apparent, confirming

that the spherical collapse assumption was the source. Figure 4.6 compares the overall scatter

between these two models; the ellipsoidal collapse model is clearly superior. We remark that not
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all of the scatter depicted is physical; there is numerical noise in our simulated density profiles

and finite density grids. Nevertheless, there are still clear sources of physical scatter. Absent an

understanding of why the ρ ∝ r−3/2 profile develops, we constructed our model using purely scaling

arguments, and these arguments can break down in two ways. First, the inner profile does not

develop instantly, so it is sensitive to a small region about the density peak instead of only its

immediate neighborhood. Also, as depicted in Fig. 4.4, the inner asymptote is not completely static

but instead grows marginally after it develops, implying that it exhibits some sensitivity to the

larger density field. Second, we only accounted for nonspherical peak shapes by altering the time

of collapse. The sensitivity of the asymptotic coefficient A to the shape of the peak may be more

complicated.

Nevertheless, it is a significant success to obtain a mere approximately 30% scatter across such a

broad range of cosmologies from a model as simple as the one presented here. The proportionality

coefficients and their statistics for our models are summarized in Table 4.3. Thus calibrated, the

model developed in this section may be employed to predict the inner asymptotes of the first halos’

density profiles in any cosmological scenario.

4.4 Density profile at large radii

We next study the density profile beyond the inner ρ ∝ r−3/2 asymptote. These larger radii,

containing the bulk of the halo mass, are relevant to gravitational lensing signatures as well as to the

dynamical evolution of the halo through mergers and tidal stripping. In this section, we discuss and

validate models that can predict the density profile at large radii. We focus on three physical models:

(1) a “turnaround” model, tracing back to Ref. [355], in which each mass shell freezes at a fraction

of its turnaround radius, or the radius of first apocenter;

(2) a “contraction” model, expressed most concisely by Ref. [362], that accounts for contraction of

halo particle orbits due to subsequent infall;

(3) a “virialization” model, put forward by Ref. [371], in which the final radius of a mass shell is

determined by enforcing that the shell’s enclosed energy be distributed according to the virial

theorem.

All of these models rely on the assumption that material is accreted gradually. Hence, they

are not applicable to the density profiles at small radii, and none of them predicts the ρ ∝ r−3/2
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asymptote. We will explore in Sec. 4.4.4 precisely where these models are accurate. In the meantime,

we validate and tune the models by using them to predict the radius rmax at which the halo’s circular

velocity is maximized along with the mass M(rmax) within this radius. The maximum circular

velocity itself follows as vmax =
√
GM(rmax)/rmax.

The radius rmax characterizes where the profile bends away from its inner asymptote.13 It is more

common in the literature to study the scale radius rs, often defined to be where d ln ρ/d ln r = −2,

instead of rmax, which is where d lnM/d ln r = 1. However, we favor rmax over rs for several reasons.

First, rmax can be read from a simulation more robustly than rs, since the mass profile is less noisy

than the density profile. Second, rmax turns out to be cleaner to predict from the linear density field.

Finally, since rmax characterizes the total mass rather than the local density, it is the more relevant

quantity for understanding halo dynamics [385] and for predicting gravitational lensing signatures.

The combination of A and rmax serves to mostly characterize the density profile of a halo, and the

mass M(rmax) (or velocity vmax) supplies an additional constraint.

4.4.1 Turnaround

To develop a model that can predict the full density profile of a collapsed halo, we must relate

this profile to the spherically averaged fractional density excess profile δ(q), where q is the comoving

radius, about the corresponding peak in the linear density field. Following the convention established

in Sec. 4.3, we define δ(q) ≡ δ(q, a)/a evaluated in linear theory during matter domination (with

a = 1 today). We will also use

∆(q) =
3

q3

∫ q

0
δ(q′)q′2dq′, (4.8)

the fractional enclosed mass excess defined under the same convention. As in Ref. [355], we consider

the simplified spherical infall model in which each spherical shell freezes at a fixed fraction of its

turnaround radius. A mass shell initially at comoving radius q turns around at physical radius

rta = (3/5)q/∆(q). Hence, the final physical radius r of this shell is

r = βq/∆(q), (4.9)

13For example, if ρ(r) = ρs(r/rs)
−3/2(1 + r/rs)

−3/2 [226, 278] (where ρs and rs are scale parameters), rmax = 1.055rs.
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where β is a proportionality constant to be measured in simulations. But in this model, mass shells

never cross, so the mass enclosed within this shell, now at r, is still

M(q) = βM
4π

3
q3ρ̄0 (4.10)

(at zeroth order in ∆) with βM = 1. This equation gives the mass profile M(r) of the collapsed halo

if q is obtained from r by inverting Eq. (4.9).

To find rmax (up to the proportionality constant β), we may maximize M(r)/r. Alternatively,

we can write
d lnM

d ln r
=

3

1 + 3ε(q)
, (4.11)

where we define14

ε(q) ≡ −1

3

d ln ∆

d ln q
= 1− δ(q)

∆(q)
. (4.12)

In this case, rmax is obtained as the solution to d lnM/d ln r = 1 or, equivalently, ε(qmax) = 2/3

with rmax computed from qmax using Eq. (4.9).

This model, at first glance, seems to be far divorced from a realistic description. However, it

turns out to be a reasonable approximation of late accretion. At late times, halo density profiles

are stable in time; see, e.g., Chapter 2. This observation is explained by noting that once the halo

is established and accretion begins to slow, newly accreted mass only contributes significantly to

the outskirts of the halo; there is too little new matter, spending too small a fraction of its orbital

period at small radii, to substantially raise the interior density. Since the density profile is static,

a newly accreted particle settles into a stable orbit with time-averaged radius proportional to its

orbital apocenter, the turnaround radius.15 The final radius in this model is to be understood as

that orbital average.

We test this model on the Nr peak-matched halos for which rmax < rvir (see Sec. 4.2). In the top

panel of Fig. 4.7, we plot the measured rmax against the prediction from this model. The model

14We define ε(q) as a generalization of the index ε of δM/M ∝ M−ε in the self-similar theory [253]. Consequently,
Eq. (4.11) has exactly the same form as its analogue in the self-similar theory.

15The orbital apocenter actually decays over time, an effect for which the contraction model accounts.
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Figure 4.7: For the turnaround model, this figure plots the values of rmax measured in our simulations
against the predicted values. For visual reference, an example proportionality curve is plotted (not a
fit). The model dramatically overpredicts rmax for a subpopulation of the halos, a problem that we
attribute to the finite time at which the simulated density profiles are measured (see the text).

appears to work well for the bulk of the halos. However, there is a significant population of halos,

especially coming from the broader 100 GeV, 3.5 keV, EMDE, and w = 0.5 power spectra, for which

the predicted rmax is much larger than the measured value. In fact, in these simulations, there are

many peaks for which the mass shell with ε = 2/3 has not yet accreted onto the halo by the final

redshift. In these cases, it makes no sense to use the properties of this shell to predict rmax.

A minimal correction, for these halos, is to instead relate rmax to the outer boundary of the halo.

In the spherical collapse model, a mass shell virializes when it falls to half of its turnaround radius;

at this point, its energy is distributed according to the virial theorem. The halo’s outer boundary

may be taken to be the physical radius of the last shell to virialize in this way, and we define qv to be

the Lagrangian radius of this shell. If we are considering the halo population at scale factor a, then

qv is the smallest q that satisfies ∆(q, a) = a∆(q) ≤ δv, where δv = 1.583. If rmax is proportional to

the halo boundary so defined, then

rmax = β′qv/∆(qv), (4.13)

where β′ is another proportionality constant, and this model is understood to apply only to the

halos of which the ε = 2/3 mass shells have not yet virialized, i.e., qmax > qv. In Fig. 4.8, we plot

the turnaround model for only those halos of which the ε = 2/3 shells have virialized, separately

plotting the qv model for the remainder of the halos. Evidently, the halos of which the ε = 2/3 shells

had not yet virialized were indeed the population of which the rmax was severely overpredicted, and

the ε = 2/3 model exhibits significantly less scatter with them excluded. Meanwhile, using qv to
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Figure 4.8: For the corrected turnaround model, we plot the values of rmax measured in our
simulations against the predicted values. At the top, we show the turnaround model with halos with
qmax > qv excluded, while at bottom, we use qv to predict rmax for the previously excluded halos.
This separation corrects the discrepancy seen in Fig. 4.7. The left panels plot all of the halos, while
the right panels show density estimates; the color scale indicates the density f(ln rmax, ln rmax,pred)
of the distribution, where rmax,pred is the x-axis quantity. The solid line corresponds to the median
proportionality constant.

predict rmax for these halos works reasonably well, although the scatter here is significantly larger.

The top panel of Fig. 4.9 depicts these differences in scatter more transparently.

Finally, we test how well this model predicts M(rmax) in similar fashion by using Eq. (4.10) and

allowing βM to float. In this case, we employ the N<3MM
r halos with rmax < rvir that also underwent

fewer than three major mergers (see Sec. 4.2). As above, we set q = qmax when qmax < qv and q = qv

otherwise. The bottom panel of Fig. 4.9 shows the scatter in these predictions. For both rmax and

M(rmax), Table 4.3 lists the tuned coefficients β and βM and their statistics.

4.4.2 Contraction

The turnaround model assumed that each new shell freezes at a fixed fraction of its turnaround

radius, contributing mass to that radius alone. In reality, a shell contributes mass to a large range of

radii. Figure 4.10 shows the density profiles16 laid down by a range of initial mass shells. These shells

16This figure depicts a halo that collapsed from an isolated 3σ peak drawn from the w = 0.3 power spectrum. This
peak was simulated with about 70 million particles in a comoving vacuum-bounded sphere of radius 1 kpc.
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Figure 4.9: Comparisons of the scatter in the rmax (top) and M(rmax) (bottom) predictions. For
each model, we plot the distribution of the coefficient β or βM between the halo quantity and its
model prediction, scaled to the mean coefficient for all halos. “t.a. (qmax)” and “t.a. (qv)” denote
the turnaround models using qmax and qv and applied only to halos with qmax < qv and qmax > qv,
respectively. “s = 0” and “s = 1” denote the respective contraction models. “vir. (qmax)” and “vir.
(qv)” denote the virialization models using qmax and qv and applied only to halos with qmax < qta and
qmax > qta, respectively. Note that the contraction models have more scatter than the turnaround
and virialization (qmax) models only because the latter describe a smaller range of halos; see the
footnotes in Table 4.3.

consist of successive factors of 1.5 in initial radius, so that the lowest shell contains the mass initially

in the comoving radius band 0.044 to 0.066 kpc; the second shell contains the mass initially in the

band 0.066 to 0.10 kpc; and so on. Notably, each shell has a characteristic radius within the final

halo below which it contributes roughly constant density. As Ref. [362] argues, the constant-density

contribution follows from the notion that particles from large-radius mass shells cross the lower radii

at such high velocity that their motions are effectively unaccelerated.

Consider a halo particle initially orbiting with apocenter radius r that encloses halo mass M(r).

As time goes on, newly accreted shells contribute to the enclosed mass, increasing M(r). In a
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Figure 4.10: The density profile of a halo (black curve) along with the density profiles contributed
by different initial mass shells (colored curves). The lowest shell contains the mass initially in the
comoving radius band 0.044 to 0.066 kpc, the second shell corresponds to the band 0.066 to 0.10
kpc, and so on. The dashed vertical line marks rmax.

spherically symmetric and self-similar system, the quantity
∮
vrdr ∝ [M(r)r]1/2 is an adiabatic

invariant, implying that as the enclosed mass grows r shrinks as r ∝ 1/M(r). While the quantity

Mr need not be conserved in a more general picture, Ref. [364] found that it remains nearly invariant

for each particle even with spherical symmetry relaxed.

For a mass shell with apocenter r′, let f(r, r′) be the fraction of the shell’s mass that is within r.

It is readily seen that the mass enclosed within a shell with Lagrangian radius q and final apocenter

r(q) increases by the factor

X(q) ≡ 1 +
3

q3

∫ qv

q
q′2dq′f

[
r(q), r(q′)

]
. (4.14)

due to the contribution of shells with q′ > q. As before, qv is the Lagrangian radius of the latest

shell to virialize; it is the smallest q that satisfies a∆(q) ≤ δv, where a is the scale factor at which we

wish to characterize the halo population (and a = 1 today). If orbital apocenters shrink according to

r ∝ 1/M , then

r(q) = β
q

∆(q)

1

X(q)
(4.15)

describes the apocenter of the q shell after contraction, with β = 3/5.

As a simple model, let us assume that each shell contributes density ρ(r) ∝ r−s below its

apocenter radius and 0 above it, so f(r, r′) = (r/r′)3−s. With this shell profile, Eq. (4.14) yields the
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Figure 4.11: For the s = 0 (top) and s = 1 (bottom) contraction models, this figure plots the
values of rmax measured in our simulations against the predicted values. The left panels plot all
of the halos, while the right panels show density estimates; the color scale indicates the density
f(ln rmax, ln rmax,pred) of the distribution, where rmax,pred is the x-axis quantity. The solid line
corresponds to the median proportionality constant.

ordinary differential equation

d lnX

d ln q
= −3− [3(3− s)ε(q)− s] (X − 1)

1 + (4− s)(X − 1)
(4.16)

with initial condition X(qv) = 1. This equation is equivalent to the simpler expression in Ref. [362],

but since it is expressed with respect to the variable q, it is more straightforward to integrate over a

numerically tabulated peak profile ε(q). The enclosed mass profile after contraction is now

M(q) = βM (4π/3)q3ρ̄0X(q) (4.17)

(to zeroth order in ∆) with βM = 1. Note that X ranges from 1 (at qv) to O(10). Using these

equations, one may maximize M(q)/r(q) to obtain qmax, after which rmax and M(rmax) are obtained

immediately. Alternatively,
d lnM

d ln r
=

3 + d lnX/d ln q

1 + 3ε(q)− d lnX/d ln q
(4.18)

with d lnX/d ln q given in Eq. (4.16), so one may solve d lnM/d ln r = 1 to obtain qmax. Finally,
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since we do not expect to employ the correct form of f(r, r′), we will allow β and βM to vary, tuning

them to simulations.

We test the contraction model using s = 0 as well as s = 1. While Fig. 4.10 suggests that s = 0

at small radii, a nonzero choice of s is motivated by noting that for a given mass shell q most of

the enclosed mass contributed by higher shells comes from shells just slightly above q. Meanwhile,

Fig. 4.10 shows that the density profile contributed by a mass shell does not level off to a constant

value until well below its apocenter radius. Therefore, the bulk of the mass contribution comes from

shell density profiles ρ ∝ r−s with s > 0. The particular choice s = 1 is partly arbitrary, but it is

roughly the slope of the shell profiles in Fig. 4.10 slightly below their apocenters.17

Figure 4.11 plots rmax against its model prediction for both contraction models using the Nr

halos with rmax < rvir. Both models successfully predict, with some scatter, the values of rmax for

the halos in all six simulations. In fact, both models work equally well, as Fig. 4.9 demonstrates.

Moreover, comparing the results of these models to those of the turnaround models, which used

the ε = 2/3 or qv shells to predict rmax, we see that the main difference is that the contraction

models can handle all of the halos in a single model requiring just one tuned parameter. Adiabatic

contraction can produce a bend in the density profile, and hence an rmax, near the halo outskirts

because the outskirts are uncontracted while the rest of the halo is contracted. Other than this,

there is no significant advantage to the contraction models for predicting rmax, as the top panel of

Fig. 4.9 shows.

We also use the s = 0 and s = 1 contraction models to predict M(rmax) using Eq. (4.17) with

βM allowed to float. For this test, we employ the N<3MM
r halos with rmax < rvir that underwent

fewer than three major mergers. The scatter in these predictions is depicted in the bottom panel of

Fig. 4.9. The tuned values of β and βM and their statistics are listed in Table 4.3.

4.4.3 Virialization

Reference [371] developed a model for halo density profiles in which a mass shell freezes

where its enclosed energy is virialized.18 In this model, the final radius of the q shell is r(q) =

17The choice s = 1 also corresponds roughly to the ρ1/2 model in Ref. [362], since ρ is approximately proportional to
r−2 at r = rmax.

18Note that a model in which a shell freezes where its own energy is virialized is equivalent to the turnaround model
above.
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Figure 4.12: For the virialization model, this figure plots the values of rmax measured in our
simulations against their predicted values. For visual reference, an example proportionality curve
is plotted (not a fit). Like the turnaround model, this model dramatically overpredicts rmax for a
subpopulation of the halos, a discrepancy that can be corrected in a similar fashion (see the text).

−(3/10)GM(q)2/E(q), where M(q) and E(q) are, respectively, the mass and energy enclosed within

the q shell in the linear density field. This model may be expressed as

r(q) = β
q

κ(q)
, κ(q) ≡ 2

q5

∫ q

0
q′4dq′∆(q′) (4.19)

with β = 3/10 and M(q) defined as in Eq. (4.10). For this model, d lnM/d ln r = 3/[6− 2∆(q)/κ(q)].

As before, qmax is obtained by maximizing M(q)/r(q) or by solving d lnM/d ln r = 1. We test this

model in a similar fashion, allowing β to float and plotting in Fig. 4.12 the simulated rmax against

the model prediction (using the Nr halos with rmax > rvir). Evidently, this model performs similarly

to the turnaround model. Again, there is a multitude of halos of which the qmax shells have not yet

accreted, leading to dramatically overpredicted values of rmax. In this case, the qmax < qv condition

turns out to be too restrictive; it eliminates too many halos. Instead, we require qmax < qta, where

qta is Lagrangian radius of the last shell to turn around. In particular, qta is the smallest q satisfying

a∆(q) ≤ δta, where δta = 1.062 and a is the scale factor at which we are studying the halo population.

If qmax < qta, we use qmax to predict rmax using Eq. (4.19); otherwise, we use qv to predict rmax using

Eq. (4.13). We also use this model to predict M(rmax) in a similar fashion (again using the N<3MM
r

halos that also underwent fewer than three major mergers), allowing βM to float. The scatter and
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Table 4.3: A summary of the predictive models along with their simulation-tuned coefficients. In
each model, the halo quantity is proportional to the peak quantity with the given coefficient between
them. The mean and rms deviation σ in the proportionality coefficient are computed in log space.
We express the spread as a ratio: in particular, the middle 50% spread is the ratio between the 75th
and 25th percentiles, while the 1σ spread is the ratio corresponding to the log-space σ. We also list
the number of halos contributing to the coefficient statistics.

Halo
quantity Peak quantity Modela

median
coef.

mid. 50%
spread

mean
coef.

1σ
spread

sample
size

section
ref.

A ρ̄0δ
9/4|∇2δ|−3/4 SC 8.76 1.43 8.50 1.44 2451 4.3.1

A ρ̄0δ
9/4|∇2δ|−3/4f

−3/2
ec EC 12.1 1.31 12.2 1.36 2450b 4.3.2

rmax qmax/∆(qmax) TA, qmax < qv 0.131 1.34 0.132 1.39 1759 4.4.1
rmax qv/∆(qv) TA, qmax > qv 0.088 2.18 0.085 1.75 712 4.4.1
rmax

qmax
∆(qmax)X(qmax)

s = 0 AC 0.414 1.40c 0.406 1.52 2471 4.4.2
rmax

qmax
∆(qmax)X(qmax)

s = 1 AC 0.846 1.39d 0.848 1.49 2471 4.4.2
rmax qmax/κ(qmax) Vir., qmax < qta 0.042 1.36 0.042 1.37 1578 4.4.3
rmax qv/∆(qv) Vir., qmax > qta 0.092 1.95 0.087 1.70 893 4.4.3

M(rmax) (4π/3)q3
maxρ̄0 TA, qmax < qv 0.273 1.64 0.258 1.84 1514 4.4.1

M(rmax) (4π/3)q3
vρ̄0 TA, qmax > qv 0.134 2.97 0.123 3.13 639 4.4.1

M(rmax) (4π/3)q3
maxρ̄0X(qmax) s = 0 AC 0.441 1.76 0.396 2.30 2153 4.4.2

M(rmax) (4π/3)q3
maxρ̄0X(qmax) s = 1 AC 0.658 1.73 0.619 2.23 2153 4.4.2

M(rmax) (4π/3)q3
maxρ̄0 Vir., qmax < qta 0.150 1.59 0.145 1.71 1341 4.4.3

M(rmax) (4π/3)q3
vρ̄0 Vir., qmax > qta 0.143 2.79 0.129 2.98 812 4.4.3

a Abbreviations refer to spherical collapse, ellipsoidal collapse, turnaround, adiabatic contraction, and virialization.
b One peak is so ellipsoidal that Eq. (4.6) has no solution, so this peak is discarded from analysis.
c The s = 0 coefficient has spread 1.33 and 1.74 over halos for which the turnaround model predicts qmax < qv and
qmax > qv, respectively, implying that the contraction model is superior or comparable to the turnaround model
in both cases.

d Similarly, the s = 1 coefficient has spread 1.33 and 1.68 in these two cases.

statistics of these predictions19 are shown in Fig. 4.9 and Table 4.3, and we find that this model’s

scatter is comparable to that of the turnaround model.

4.4.4 Discussion

Table 4.3 summarizes the rmax and M(rmax) models and the statistics of their simulation-tuned

parameters. Evidently, all of these models exhibit similar scatter. For instance, when qmax < qv or

qta, each model’s predicted rmax exhibits about 30% scatter in the middle half of its predictions.

These similarities suggest there may be a statistical floor limiting the precision of all three models

equally. We propose two sources of such a floor. The first is artificial discreteness noise in our

simulations. As noted in Chapter 2, there is discreteness noise in each radial bin of the density profile

that is significantly larger than Poisson noise and may be associated with the accretion of artificial

fragments. Our procedure of averaging radial profiles over a finite time interval (see Appendix C.1)

19We remark that the optimal β ' 0.042 is much smaller than the exact value 3/10 claimed in Ref. [371].
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mitigates but does not eliminate this noise.20

The other probable source of a statistical floor is physical and owes to a simplifying assumption

common to all three models: spherical symmetry. Observe in Fig. 4.3 that at the initial radius of the

qmax shell the density profile of the peak that is depicted—a typical peak drawn from the w = 0.3

power spectrum—is highly ellipsoidal. It is likely that a substantial fraction of the approximately

30% scatter in rmax results from deviations from spherical symmetry in the initial density peaks. To

correct this, models must be employed that move beyond the assumption of spherically symmetric

initial conditions, perhaps employing ellipsoidal collapse arguments [373, 374, 384] or drawing from

nonspherical self-similar infall theory [363, 364]. The principal difficulty in moving beyond spherical

symmetry is that the three-dimensional shape of a peak is different at each radius, an effect for

which no model has accounted (to our knowledge). However, the spherical models presented here

exhibit just approximately 30% scatter in rmax and approximately 60% scatter in M(rmax) over the

full range of cosmologies we simulated, a success that should not be understated. As we will see in

Sec. 4.5, halo mergers present a larger source of error.

Beyond predicting rmax and M(rmax) (or equivalently vmax), we may ask how well the spherical

infall models can predict the full density profiles of the first halos. No model successfully predicts

ρ ∝ r−3/2 at small radii21, and this is not surprising because in the moments after halo collapse

the accretion of new material is not adiabatic with respect to the orbits of the already bound

material. Nevertheless, we may explore the radial range over which the spherical infall models do

accurately predict the density profiles. Figure 4.13 compares the mass profiles of a small halo sample

to their predicted profiles using the median proportionality coefficients in Table 4.3. Evidently,

the turnaround and virialization models do not accurately predict the density profile below rmax,

although they may succeed at larger radii. The s = 0 and s = 1 contraction models, and especially

the latter, more accurately capture the shape of the profile at smaller radii. However, as shown

20There are other sources of discreteness noise in our analysis, but they are minor. The binning of our density profiles
in factors of 1.1 introduces artificial scatter, but this scatter does not exceed 5% in rmax and is further reduced by
our use of interpolation (see Appendix C.1). There is also noise in the predicted values of rmax because they arise
from a finite density grid, but since qmax is typically much larger than a grid cell [so δ(qmax) averages over a large
number of cells], the resulting scatter is small.

21An s = 3/2 contraction model predicts ρ ∝ r−3/2 at small radii, but only in a contrived way; the adiabatic
approximation is not valid when this part of the profile develops.
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Figure 4.13: The mass profiles (thick, dark lines) of a few halos in the w = 0.3 (top) and EMDE
(bottom) simulations compared to their model predictions (thin lines). This figure is intended to
depict how the shapes of the profiles compare, so the sample was selected to have little discrepancy
in the overall normalization of M/r. The simulated profiles are plotted out to their virial radii. The
turnaround and virialization model predictions largely overlap.
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in Fig. 4.10, the true density profile of a mass shell is more complicated than ρ ∝ r−s, so a more

sophisticated model for a shell’s density profile should yield still better results.

In this section, we presented models that can predict the outer portions of the density profiles of

the first halos in any cosmology. While the models themselves are not new, our calibrations enable

their use as predictive tools. Moreover, our simulations demonstrate the universality of these models

by showing that they succeed across wildly dissimilar cosmological scenarios.

4.5 Predicting halo populations

So far, we have studied the relationship between a density peak and its resulting halo. However,

our ultimate goal is to study the larger populations. Recall from Sec. 4.2 that not all peaks matched

to halos in our simulations and not all halos matched to peaks. These discrepancies are reflected in

Table 4.2 and may arise from physical processes, such as halo mergers, or numerical artifacts in our

simulations. We have shown that if we know that a peak developed into a halo that persisted to

some later redshift then we can predict the properties of that halo from the properties of the peak.

Ultimately, however, we wish to predict an entire population of halos directly from a population of

peaks. In light of the halo- and peak-count discrepancies, can our models proceed in this way?

4.5.1 Population comparisons

We first study the population of halos distributed in the asymptote A. In Fig. 4.14, we compare

the entire halo population found in our simulations to the population predicted by accounting for

every peak in the initial density fields that would have collapsed by simulation termination. We use

the ellipsoidal collapse model. Generally, we see that for the narrower w = 0.1, w = 0.3, and EMDE

power spectra the predicted population matches the simulated population reasonably well. In these

scenarios, our model underpredicts halos at the low-density end, a surprising result that may be

due to artificial fragmentation. In simulations with a small-scale power-spectrum cutoff (like ours;

see Fig. 4.1), discreteness noise causes filamentary structures to fragment into halos even below the

scales of the smallest density fluctuations. These halos have been shown to be unphysical simulation

artifacts [389, 390], but they could contribute to the excess of less-dense halos in our simulations

relative to model predictions in the cases of the narrower power spectra.

Otherwise, Fig. 4.14 shows a tendency for the model to overpredict halos at the middle-density

range and underpredict at the highest-density range. This discrepancy can be attributed to mergers,

for which our model does not account. Halo mergers reduce the number of halos while raising the
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central density of the merger remnants. For the broader w = 0.5, 100 GeV, and 3.5 keV power spectra

(bottom panel of Fig. 4.14), the merger-based discrepancy is amplified: the model underpredicts

the densest halos and dramatically overpredicts the rest. Evidently, while our model can predict

the density profiles of individual halos, an understanding of halo mergers is necessary to accurately

predict halo populations in scenarios with more broadly supported power spectra. We will return to

this point.

We next study the distribution in the radius rmax. Many of the simulated halos had rmax > rvir,

and while we discarded those halos from previous analyses, doing so now would alter the populations.

Instead, we account for this problem here by substituting rvir for rmax in those cases. As Fig. 4.15

shows, the s = 0 contraction model predicts the rmax distribution reasonably well for the narrow

power spectra, with the bulk of the discrepancy arising from overprediction of the total halo count

due to halo mergers. The predicted distributions are also more sharply peaked, an effect that may

owe to the model’s neglect of spherical asymmetry (see Sec. 4.4.4). For the broader power spectra,

the halo count discrepancy is magnified due to the much larger frequency of mergers. However,

unlike in the case of the asymptote A, we will soon see that the radius rmax does not significantly

increase due to mergers beyond what the models already predict. Hence, there is no significant

underprediction of the largest-radius halos.

We can also ask how well our models predict aggregate observational signals. If we assume

that all halos have ρ ∝ r−3/2 inner density profiles, then the total dark matter annihilation rate

in halos is proportional to the sum
∑
A2 over all halos.22 In Table 4.4, we show how accurately

the ellipsoidal collapse model predicts the aggregate annihilation signal. Remarkably, despite not

accounting for halo mergers, we successfully predict the annihilation signal to within a factor of

1.3 for all simulations. The increased central density within merger remnants has compensated for

the drop in halo count. One caveat is that in this calculation, we did not account for changes in

the slope γ of the ρ ∝ r−γ inner profile resulting from mergers. This change must be accounted for

separately and will significantly reduce the annihilation signal (see Chapter 2).

We also consider an aggregate microlensing signal. The apparent image of a background star

22There is a logarithmic sensitivity to rmax, which we neglect. Also, note that there is a density cap imposed by
annihilations [285], so the signal converges even for ρ ∝ r−3/2.

87



100 101 102

A (munitr
−3/2
unit )

0.00

0.01

0.02

0.03

0.04
R

3 ∗d
n
/
d
ln
A

w = 0.1
w = 0.3
EMDE

100 101 102

A (munitr
−3/2
unit )

10−5

10−4

10−3

10−2

R
3 ∗d

n
/
d
ln
A

w = 0.5
100 GeV
3.5 keV

Figure 4.14: A comparison between the simulated halo population, as solid lines, and the population
predicted from the peaks in the linear density field, as dashed lines, distributed in the inner asymptotic
coefficient A. We use the ellipsoidal collapse model to predict A. Top: The three simulations with
narrower power spectra. Bottom: The three simulations with broader power spectra. The vertical
axis is logarithmic here to accommodate the differences in scale. We find that our model can capture
halo populations arising from more narrowly supported power spectra, but it does not describe well
the populations arising from broader power spectra because of the predominance of halo mergers in
those scenarios.
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Figure 4.15: Similar to Fig. 4.14, but studying the halo population distributed in the radius rmax

instead. We use the s = 0 contraction model. As in Fig. 4.14, we find that our model describes
the halo populations arising from more narrowly supported power spectra with reasonable success,
although the predicted distributions tend to be more sharply peaked. However, halo mergers greatly
alter the halo populations in scenarios with broader power spectra.

is deflected by an angle proportional to M2D(ξ)/ξ, where M2D(ξ) is the projected mass enclosed

within impact parameter ξ. As an approximation, we claim that the deflection due to a halo is

proportional to M(rmax)/rmax and a function related to the impact parameter. Integrating over

impact parameters introduces a factor r2
max, the characteristic area of the halo. Hence, for a halo

population, the aggregate lensing signal, considered as the expected deflection of a given image, is

proportional to
∑
M(rmax)rmax summed over all halos.

In Table 4.4, we show how accurately the s = 0 contraction model predicts this signal. We find

that our models predict the lensing signal significantly worse than the annihilation signal, although

in four of the simulations, the prediction still agrees to about a factor of 2. For the simulations

drawn from the 3.5 keV and 100 GeV power spectra, however, the model overpredicts the lensing

signal by an order of magnitude. These power spectra yield the greatest prevalence of halo mergers,

and unlike in the case of annihilations, mergers do not sufficiently boost the remnant’s lensing signal
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Table 4.4: This table shows how accurately our models predict aggregate halo signals. We consider
simplified aggregate signals

∑
A2 for annihilation and

∑
M(rmax)rmax for lensing, each summed

over the population of predicted or simulated halos. In each case, we list the ratio of the signal
predicted from the linear density field to the signal aggregated over halos in the simulation box. We
use the ellipsoidal collapse and s = 0 contraction models.

Simulation
∑
A2

∑
M(rmax)rmax

w = 0.1 0.91 0.56
w = 0.3 0.89 0.69
w = 0.5 0.91 2.2
EMDE 0.78 0.66
100 GeV 1.15 33
3.5 keV 1.16 14

relative to its model prediction to compensate for the loss of halo count in mergers. Hence, the

lensing signal in the simulations is much smaller than that predicted from the linear density field.

We remark, however, that the story may change if instrument sensitivities are taken into account.

Mergers predominantly destroy smaller halos, and their signals may have been beyond sensitivity

limits regardless.

It is clear from these results that an accurate accounting of halo mergers is necessary to predict

a halo population in any generality. However, for narrower power spectra such as our w = 0.1,

w = 0.3, or EMDE cases, mergers are subdominant, and our models can predict the populations

reasonably well. Moreover, when considering aggregate annihilation signals, halo mergers may not

have a significant impact beyond altering the slope γ of the ρ ∝ r−γ inner density profiles. For these

uses, we describe in Appendix C.3 a method to sample the halo population directly from the matter

power spectrum P(k), bypassing the step of drawing a density field δ(x). Halo populations predicted

using this method are slightly different from those predicted using our density fields, but we propose

that they are more accurate; the method we describe can easily sample a much larger number of

peaks, and it is not subject to errors related to the finite size and finite grid spacing of a sampled

density field.23

23If sampling directly from the power spectrum is more accurate, one may wonder why we chose to compare our
simulation results to those predicted from the less-accurate finite density fields (Figs. 4.14 and 4.15). The reason for
this choice is that it leads to a more explicit test of our model. Since we compare a simulation’s results to model
predictions using the same simulation’s initial density field, any discrepancy that is not a simulation artifact can be
attributed to the model.
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4.5.2 Halo mergers

A full treatment of mergers is beyond the scope of this work, but we are poised to make some

observations. Our procedure for matching a halo to its predecessor density peak involved tracking

each halo backward through time. During this process, we counted the number of major mergers

this halo underwent, which we define to be a merger between two halos with mass ratio smaller than

3. Over half of our halos with well-resolved asymptotes experienced at least one major merger, and

12% experienced at least three.

In an effort to find a simple way to cull halos that end up merging, we explored cutting out density

peaks that were too close to an earlier-collapsing density peak. We considered two characteristic

comoving length scales below which to make these cuts: the scale qpk associated with the density

peak (see Sec. 4.3) and the scale qmax where ε(qmax) = 2/3 (see Sec. 4.4.1). Unfortunately, neither

of these cuts produced sensible results. The qpk cut culled far too few halos, while the qmax cut

culled far too many. Ultimately, we expect that a more sophisticated accounting of mergers will be

necessary, possibly following along the lines of extended Press-Schechter theory [291] or the Peak

Patch algorithm [384, 393, 394].

Another question is how halo density profiles change due to mergers. Reference [280] found that

successive mergers cause the slope γ of the small-radius asymptote of the density profile, ρ ∝ r−γ ,

to become shallower than its initial value of γ = 3/2. The same work also found that successive

mergers increase the central density. Figure 4.16 shows that both of these results are borne out in

our own simulations as well. There is a clear trend wherein more major mergers lead to successively

denser24 but shallower inner structures. On the other hand, we also see in Fig. 4.16 that major

mergers do not significantly increase rmax beyond what our models already predict, although they

do increase M(rmax).

4.6 Conclusion

The first halos form by direct collapse of peaks in the primordial density field. If some of these halos

survive the subsequent hierarchical clustering process, as evidence suggests [262, 266, 280, 284, 339–

342], then they would be the densest dark matter objects in the Universe. In this work, we presented

24While the coefficient A is only well defined if γ = 3/2, our procedure for measuring A (see Appendix C.1) obtains a
logarithmically averaged value of ρr3/2 over the inner density profile regardless.
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Figure 4.16: The impact of major mergers on the density profiles in our simulations. Top: The
effect on the power-law index γ of the ρ ∝ r−γ inner asymptote. Since we do not resolve these
radii well, much of the scatter likely arises from numerical noise. Middle to bottom: The effects
on the asymptote A, radius rmax, and mass M(rmax), respectively, plotted as the ratio between
the measured value and the prediction using our models. For the asymptote, we use the ellipsoidal
collapse model, while for rmax and M(rmax), we use the s = 0 contraction model. The color scale,
which is logarithmic, represents a density estimate (in log space for α, β, and βM ; darker is denser),
while the lines mark the median and the 25th and 75th percentiles at each merger count.
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models that predict the density profiles of these halos directly from the properties of the density

peaks that formed them, and we used high-resolution cosmological simulations in a variety of

different scenarios to tune and validate these models. The models are described in Secs. 4.3 and 4.4

and summarized in Table 4.3. They have simulation-tuned parameters, but these parameters are

independent of cosmology and do not need to be retuned to accommodate different scenarios.

We treated small and large radii separately, with the understanding that these regimes form

under radically different circumstances. At small radii, the first halos develop ρ = Ar−3/2 density

profiles [26, 226, 261–266], and our model predicts the coefficient A with remarkable success. Over

the full range of cosmologies we explored, the scatter from our model is only in the vicinity of

30%-40%, and it is likely that a significant fraction of that scatter arises from numerical noise in our

simulations. The density profiles at large radii are more varied, but we parametrize them using the

radius rmax at which the circular velocity is maximized along with the mass M(rmax) enclosed within

that radius. For this regime, we employ models already present in the literature [355, 362, 371], but

we supply calibrations that enable their use as predictive tools applicable to any cosmology. The

scatter from our models is roughly 40%-50% in rmax and a factor of 2 in M(rmax), and, similarly,

not all of this scatter is physical.

In this way, the models we presented can predict the halo arising from a given density peak.

Our goal, however, is to predict populations of halos. For a power spectrum of density fluctuations

that is narrowly supported, such as the spectrum imprinted by an EMDE [181–183, 224] or certain

inflationary models [27–30, 49, 51, 52, 73, 76, 78], our models replicate the entire halo population

reasonably well. Thus, our models can serve as a tool to predict the observational signals of such

cosmologies. However, for more broadly supported power spectra, such as those arising from a

scale-invariant initial spectrum, halo mergers dramatically alter the halo population, causing the

populations that arise in our simulations to differ substantially from the populations our models

predict. Interestingly, modulo changes in the slopes γ of the ρ ∝ r−γ inner density profiles, dark

matter annihilation signals seem to be sufficiently close to additive in halo mergers that our models

still predict the aggregate annihilation signal to within 30% in every cosmology we tested.

Nevertheless, it is not clear that this additivity in the annihilation signal should extend beyond

the timescales spanned by our simulations. More broadly, our models predict the initial halo

population, but a proper understanding of halo mergers is needed in order to robustly connect it to
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the population today. It is necessary to understand both how mergers are distributed across halos

and time and how they impact halo density profiles. Methods exist that can predict the distribution

of mergers, the most prominent of which is the extended Press-Schechter theory [291]. The Peak

Patch algorithm [394] represents a method that may be easier to adapt, among other advantages,

if more computationally expensive to apply. Meanwhile, the larger challenge is to predict how halo

mergers alter density profiles. References [262, 280, 339] (for major mergers) and [340–342] (for

minor mergers) represent steps toward this goal, but there is not, as yet, a sufficiently general model.

Moreover, there is room for improvement in our models themselves. In predicting the density

profiles at large radii, we assume that each mass shell contributes density in a profile that is a single

power law up to a maximum radius. In reality, shell profiles follow more complicated forms that are

sensitive to the total density profile; see Fig. 4.10 and Refs [362, 364]. Utilizing more accurate shell

profiles would likely improve the model predictions for the density profile, especially in predicting its

broader shape rather than only rmax and M(rmax). Also, our model for the density profile at large

radii completely discounts any deviations from sphericity in the initial peak. Another avenue for

improvement may be to incorporate ellipsoidal collapse. At small radii, the reason the ρ ∝ r−3/2

profile arises is not well understood, and its accuracy has only been confirmed down to the resolution

limits of N -body simulations. A physical understanding must be developed of the mechanism by

which this profile arises in order to confirm whether the profile truly extends to arbitrarily small

radii.

The primordial density field and its power spectrum of density fluctuations comprise a valuable

window into the early Universe and the nature of dark matter. Our work in this chapter was carried

out as part of an effort to use the observational signatures of dark matter halos to probe these

fluctuations. Further research is still needed to understand the impact of mergers on halo populations

before these signatures, or their nonobservation, can be employed to robustly constrain cosmology.

Nevertheless, the models presented here, which predict the initial halo population, represent a step

forward in our capacity to use this probe.

94



CHAPTER 5:
TIDAL EVOLUTION OF DARK MATTER ANNIHILATION RATES IN

SUBHALOS1

5.1 Introduction

Despite overwhelming evidence for the existence of dark matter (e.g., Refs. [16, 192, 193]), its

microphysical details remain unknown. Numerous models have been considered, but none have

been experimentally confirmed (see Refs. [195–199] for reviews). However, to explain the present

abundance of dark matter, a large class of models, including the popular weakly interacting massive

particle [283], propose that dark matter was pair produced from the thermal plasma in the hot early

Universe. In this scenario, the dark matter can annihilate back into standard-model particles today,

leading to prospects for the detection of high-energy gamma rays or other annihilation products

(e.g., Ref. [344]).

The rate of dark matter annihilation scales as the square of the dark matter density, so it is

strongly sensitive to the spatial distribution of the dark matter. At galactic scales and above, this

spatial distribution is well understood. Initially overdense patches in the Universe collapse into

gravitationally bound dark matter halos, which thereafter merge to produce successively larger

structures. Numerical simulations demonstrate that the spherically averaged mass distributions of

the resulting dark matter halos are well described by the NFW density profile [205, 260],

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
, (5.1)

which has scale parameters rs and ρs. Baryonic effects may subsequently alter this density profile

(e.g., Ref. [396]).

1This chapter was previously published in Physical Review D as Ref. [395] and is copyright c© 2019 American Physical
Society. The original reference is as follows: M. S. Delos, Tidal evolution of dark matter annihilation rates in subhalos,
Physical Review D 100, 063505 (2019).
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However, at subgalactic scales, the spatial distribution of the dark matter is less clear. As a

halo is built up through hierarchical merging, it accretes smaller halos that survive as subhalos

within the larger host. These subhalos gradually lose mass due to the influence of tidal forces from

the host (e.g., Refs. [392, 397]), surviving until either they are completely stripped or dynamical

friction causes them to sink into the host’s center [398]. However, for sufficiently small subhalos

dynamical friction is inefficient [397]. Moreover, numerous analyses have found that if the subhalos

possess divergent central density, as in the NFW profile, then tidal forces may never fully strip them

[284, 325, 341, 399].

Thus, a galactic-scale dark matter halo is likely to possess a multitude of subhalos. This

substructure can significantly boost the rate of dark matter annihilation, depending on the scale

of the smallest halos and when they form [263–265, 284, 321, 345, 347, 400–407] (see Ref. [348]

for a recent review). When the smallest halos are microhalos of roughly earth mass, annihilation

rates may be boosted by a factor of about 10 [405, 407] relative to those expected in the absence of

substructure, assuming that these halos arise from primordial density fluctuations comparable to the

large-scale fluctuations inferred from the cosmic microwave background (e.g., Ref. [16]). Moreover,

this boost can be raised by orders of magnitude by cosmological scenarios that amplify small-scale

density fluctuations and thereby lead to earlier and more abundant microhalo formation. Such

scenarios include a period of domination by a heavy species [181–183, 224] or a fast-rolling scalar

field [191] prior to nucleosynthesis, along with a variety of inflationary models [27–31, 38, 40, 49, 51–

53, 56, 69–71, 73–76, 78–81]. In these cases, the high density within these microhalos causes them

to completely dominate any dark matter annihilation signal (e.g., Refs. [26, 206, 234]).

Unfortunately, all estimates of the substructure’s boost to annihilation rates are subject to

uncertainties about the impact of tidal effects on subhalos. Cosmological simulations cannot resolve

subhalos that are much smaller than the host, and those that are resolved are prone to artificial

destruction [328, 408, 409]. Numerous semianalytic models have been developed to describe the

dynamical evolution of subhalos; Refs. [410–417] model a subhalo’s loss of mass due to tidal stripping,

and Refs. [340, 341] predict the impact of this mass loss on the halo’s density profile. However, these

models are typically tuned to the results of cosmological simulations, so their predictions are affected

by the artificial subhalo disruption occurring therein. They cannot fully reproduce the results of

idealized simulations [328, 342].
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Meanwhile, calculations of the dark matter annihilation rate in the substructure have employed

a number of different treatments of tidal evolution. Some, such as Refs. [347, 407], employ a

combination of the models above to predict the time evolution of subhalo density profiles. Others, such

as Refs. [224, 404–406], employ simpler models, often either truncating subhalos at a characteristic

tidal radius or formulating a destruction condition for subhalos and assuming the survivors are

unaltered. Still others, such as Refs. [26, 206, 234, 263, 265, 401, 402] neglect the tidal disruption of

the substructure altogether.

Our work is motivated by this context. Since cosmological simulations cannot resolve the smallest

substructures, we follow Refs. [340–342, 409, 418, 419] in using idealized simulations of an N -body

subhalo inside an analytic galactic potential. However, unlike these works, we focus on understanding

the impact of tides on the subhalo’s annihilation rate, a goal that requires significantly better

resolution than has been attained in previous studies. Moreover, previous works have focused on

understanding the evolution of subhalos of scales resolvable in cosmological simulations, such as

halos associated with dwarf galaxies within a galactic halo. Accordingly, they probe only the subhalo

properties and orbits that are found in such simulations. For instance, Ref. [342] only studies

subhalos orbiting above the host’s scale radius. In contrast, we seek to probe the full range of

subhalos down to the smallest microhalos, which span a far broader range of properties and orbits.

Using the results of 52 high-resolution N -body simulations, we develop a physically motivated

model that can predict the time evolution of a subhalo’s annihilation rate due to tidal effects. In the

process, we isolate three physical variables that determine this evolution:

(1) The energy injected by tidal forces into subhalo particles over the course of each orbit about

the host, in units of the particle’s binding energy to the subhalo;

(2) The ratio of stretching (radial) tidal forces to compressive (tangential) tidal forces;

(3) The range of radii in the subhalo across which material is heated by tidal forces, which is set

by the shape of the subhalo’s orbit.
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This model predicts the suppression of a subhalo’s annihilation rate, characterized by its J factor2

J ≡
∫
ρ2dV, (5.2)

as a function of its orbit about the host. To assist the application of our model, we supply convenient

fitting functions.

This chapter is organized as follows. In Sec. 5.2, we detail how we carry out our N -body

simulations. Section 5.3 qualitatively discusses the trajectory of a subhalo’s J factor, interpreting

simulation trends physically and motivating our model. In Sec. 5.4, we develop our predictive model

for the evolution of a subhalo’s J factor, and Sec. 5.5 summarizes the model and discusses limitations

and extensions. In Sec. 5.6, we compare the model’s predictions to those of previous semianalytic

models. Section 5.7 concludes, and we supply a variety of appendixes in Appendix D. Appendix

D.1 supplies further details about our simulations, while Appendix D.2 quantifies the range of

subhalo sizes over which the results of these simulations are applicable. Appendix D.3 presents

fitting formulas and other computational details that aid in applying our model. Appendix D.4 tests

our model against a publicly available simulation library [342]. Finally, in Appendix D.5, we observe

that our model can be adapted to describe the evolution of subhalo properties beyond the J factor.

5.2 Simulations

Owing to the difference in scales between a host and its smallest subhalos, the computational

challenge in simulating subhalo evolution in a cosmological context is formidable. A number of

previous works have addressed this problem by simulating an N -body subhalo inside an analytic

host potential [340–342, 409, 418, 419]; our approach is similar but differs in one key step. Instead

of placing a subhalo in orbit about the host potential, we subject the subhalo directly to the

time-dependent tidal force field experienced by an analytic orbit about the host. This procedure

minimizes the impact of numerical precision errors that can result from differences in scale between

the subhalo’s orbital and internal dynamics. In this section, we detail that procedure and present

qualitative results.

2We assume the dark matter annihilation cross section is velocity independent in the nonrelativistic limit.
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We assume that both the host and the subhalo possess the NFW density profile given by Eq. (5.1).

While there is evidence that many galactic halos possess constant-density cores instead of the NFW

profile’s cusp [420], at least some galactic halos appear to be cuspy [421]. Additionally, while

microhalos are expected to form with ρ ∝ r−3/2 inner profiles [26, 226, 261–266, 336], it is likely

that mergers will drive their inner cusps toward the ρ ∝ r−1 of the NFW profile [262, 280, 336].

To model the host’s tidal field we begin with an analytically computed orbit, described by the

time-dependent vector R(t) pointing from host center to subhalo center. The tidal acceleration at

position r relative to the subhalo center is3

Ftidal(r) = −dF

dR
(r · R̂)R̂− F (R)

r − (r · R̂)R̂

R
(5.3)

at linear order in r/R, where F (R) is the force profile of the host, R = |R|, and R̂ = R/R. We

modified the Gadget-2 N -body simulation code [274, 275] to include this tidal acceleration.

We prepare the initial N -body subhalo with an NFW profile by drawing particles from an

isotropic distribution function computed using the fitting form in Ref. [422]. Additionally, we sample

the subhalo’s central region at increased resolution; particles whose orbital pericenters are below

rs/3, where rs is the subhalo scale radius, have 1/64 the mass and 64 times the number density of

the other particles. Appendix D.1 demonstrates that there is no significant relaxation associated

with the use of particles of different masses. We cut off the density profile at r = 500rs; subhalo

particles this far out are stripped immediately, so as long as the cutoff radius is much larger than rs,

the precise choice makes no difference.4 We represent the subhalo using a total of 8× 106 particles,

and roughly 70% of them, carrying roughly 4% of the total mass, are high-resolution particles. All of

our subhalos have rs ' 10−6Rs, where Rs is the scale radius of the host, but as we will soon discuss,

the precise choice of rs has no impact on dynamics.

For our simulations, we consider a variety of orbits about the host. An orbit in a spherically

3We experimented with using the full tidal force Ftidal(r) = F (R + r)−F (R), but because r � R in our simulations,
it offers no advantage; moreover, it is less numerically stable due to the subtraction of two close numbers.

4The natural place to cut off the density profile would be where the density reaches that of the subhalo’s background:
the host. However, tidal forces automatically truncate a subhalo’s density profile at roughly the radius where its
average density equals that of the host [see, e.g., Eq. (5.24)], so it is not necessary to tune a cutoff radius by hand.
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symmetric potential is characterized by two parameters: energy E and angular momentum L or,

equivalently, a scale parameter and a shape parameter. For convenience, we use the circular orbit

radius5 Rc, defined as the radius of the circular orbit with energy E, and the “circularity” η = L/Lc,

where Lc is the angular momentum of the circular orbit with the same energy. In each simulation

the subhalo begins at its orbital apocenter.

Figure 5.1 illustrates a simulation executed through this arrangement. The host has scale radius

Rs = 0.8 kpc and scale density Ps = 5× 107 M�/kpc3, while the N -body subhalo is initially a

microhalo with scale radius rs = 6× 10−7 kpc that has ρs/Ps = 1285 times the scale density of the

host. The subhalo orbit has Rc = 0.15 kpc and η = 0.5. The simulation runs through 18 orbits

about the host, and Fig. 5.2 plots the density profile of the subhalo at each apocenter. Consistently

with the results of other works, such as Refs. [284, 325, 341, 399], we find that this subhalo’s central

cusp is highly resistant to disruption by the host’s tidal forces. 91% of the subhalo’s mass is stripped

by simulation termination, but its central density profile is largely unscathed.

Our goal in this work is to understand how the annihilation signal decays due to tidal effects. For

this purpose, we consider the J factor, Eq. (5.2), integrated over the subhalo mass distribution. This

J factor is the factor in the annihilation rate that depends on mass distribution, and Appendix D.1

discusses our procedure to extract it from the simulations. We also show in Appendix D.1 that the

resulting J-factor trajectories are converged with respect to simulation parameters.

Finally, we conclude this section by discussing the applicability of our simulation results. The

linearized tidal force in Eq. (5.3) is valid for r � R, and in Appendix D.2 we show that it yields

accurate results in simulations as long as

rs . 0.1Rc. (5.4)

Our simulation results are only applicable if this condition is satisfied. Additionally, since we do not

simulate the host halo’s dynamics, we cannot account for dynamical friction. Reference [342] found

5Note that Rc is roughly the time-averaged radius; for a power-law potential φ(R) ∝ Rn, Rc = 〈Rn〉1/n. See
Appendix D.3 for a more precise relationship for NFW profiles.
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Figure 5.1: The projected density field of a microhalo simulated in orbit about a galactic halo. The
width of each frame is 0.03 pc, and the arrow indicates the direction and distance to the host center.
The density is computed using a k-nearest-neighbor density estimate with k = 50 and is plotted
with a logarithmic color scale (lighter is denser).

that dynamical friction6 has minimal impact on a subhalo’s mass evolution for host-to-subhalo mass

ratios M/m & 100. However, since subhalos relevant to dark matter annihilation may orbit over

significantly longer timescales than considered in Ref. [342], it is also useful to have an analytic

estimate for when dynamical friction can be neglected. It follows from the analysis in Ref. [397] that

for a subhalo that accretes onto a host at redshift z, dynamical friction can be neglected as long as

the host-to-subhalo mass ratio M/m satisfies

M/m

ln(M/m)
& 10(1 + z)3/2. (5.5)

Our results may be considered applicable as long as Eqs. (5.4) and (5.5) are satisfied, but we remark

that if one is satisfied, then the other likely is too.

6Specifically, Ref. [342] studied dynamical self-friction, or the dynamical friction that results from the subhalo’s own
tidal tail. This friction can be considerably more efficient than that resulting from the host’s material alone [423, 424].
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Figure 5.2: The density profile evolution of the halo depicted in Fig. 5.1. 91% of the initial mass of
the microhalo is stripped by t = 0.9 Gyr, but the central density profile is largely unaffected.

5.3 Trends in the tidal evolution

In this section, we explore trends in the evolution of J as a function of system and time and

attempt to explain them physically. Our goal is to find the J factor as a function of time t,

orbital parameters Rc and η, subhalo parameters rs and ρs, and host parameters Rs and Ps. The

dimensionality of this space is large, but some immediate simplifications are evident:

(1) As long as the subhalo is much smaller than its orbit, or rs � Rc, the value of rs has no impact

on dynamics.7 All of our simulated subhalos have rs ' 10−6Rs, which leads to rs � Rc for all

orbits we consider.

(2) If instead of time t we use the orbit count n = t/T , where T is the orbital period, then the

overall density scale has no impact on dynamics, and only the ratio ρs/Ps enters.

(3) The overall size of the host-subhalo system is irrelevant, so only the ratio Rc/Rs affects

dynamics.

We have verified that all of these simplifications are borne out in our simulations. Hence, if Jinit is

the initial J factor, then J/Jinit is now a function of time n = t/T and just three system parameters:

ρs/Ps, Rc/Rs, and η. Notably, the tidal evolution is independent of the subhalo’s mass, a property

also noted in prior works (e.g., Ref. [342]).

7For fixed density, the internal velocities of particles in a subhalo are proportional to its radius. Since the tidal
acceleration in Eq. (5.3) is also proportional to the radius, fractional velocity changes induced by tidal forces are
independent of the subhalo’s radius.
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Figure 5.3: Trajectories of the J factor for different systems with the same x̃ = Rcρs
RsPs

and η. Scaled
to the orbital period, these systems all have the same trajectory.

5.3.1 Trends in the simulations

We first inspect the results of selected simulations in order to find trends in the behavior of J .

As a further simplification, we focus on the Rc � Rs regime. The host potential is self-similar in

this regime, reducing the tidal evolution problem in two additional ways:

(1) The orbital radius Rc is degenerate with properties of the host and subhalo. For instance,

reducing the orbital radius is equivalent to making the host denser.

(2) Orbits with the same circularity η have the same shape; they are rescaled versions of one

another.

The first simplification further reduces the parameter space so that in this self-similar regime, there

are only two parameters,8

x̃ ≡ Rcρs
RsPs

(5.6)

and η. Figure 5.3 shows the success of this parameter reduction; different systems with the same x̃

and η follow precisely the same J(n) trajectories. Meanwhile, the second simplification allows us

to isolate the impact of these two parameters; we can vary the “reduced orbital radius” x̃ without

altering the orbit’s shape.

We first investigate the impact of orbit shape. Figure 5.4 shows the trajectory of the J factor

8We reserve x (without the tilde) for later use as a modified version of x̃.
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for several values of η. We see immediately that the J factor oscillates with the orbital period

with a larger amplitude for more eccentric orbits. This trend is explained by noting that all tidal

forces are compressive in the self-similar regime,9 so the subhalo becomes most compact near the

orbital pericenter. The subhalo’s J factor, being proportional to its mass-weighted average density

[e.g., Eq. (D.3)], is maximized at this point. The precise appearance of these oscillations can be

complicated because a subhalo’s response to these tidal forces is delayed; for instance, double peaks

in Fig. 5.3 arise because the subhalo and its unbound tidal stream are maximally compressed at

different times. However, these oscillations are relatively unimportant. If subhalos are at random

points in their orbits, then the J factor averaged over an orbital period suffices to predict the

aggregate signal from a population of subhalos. We discuss this point further in Sec. 5.5.

More interesting trends arise in the broader time evolution. Figure 5.5 plots the running power-law

index d lnJ/d ln t of the J factor with time, and the equation

d lnJ

d ln t
= −bn1−c (5.7)

describes the evolution of this index reasonably well as long as |d ln J/d ln t| < O(1). Here, b > 0

and c > 0 are constant parameters, and c is smaller for more eccentric orbits. Figures 5.4 and 5.5

also show fits to the J-factor trajectories using this form, which determines J(n) up to a constant

multiple. The exponent in Eq. (5.7) is so defined because it leads to the more evocative expression

1

J

dJ

dn
= −bn−c. (5.8)

If c = 0, this equation tells us that the J factor would decay by the same factor e−b over each

orbit. The parameter c, when c > 0, accommodates some physical process by which tidal effects lose

efficiency over time.

We show the impact of the orbital radius in Fig. 5.6, which plots the trajectories of J and

d ln J/d ln t for a variety of reduced orbital radii x̃ ranging from 0.7 to 230. Evidently, x̃ affects the

9Tangential tidal forces are always compressive, while radial tidal forces are negligible when Rc � Rs; see Sec. 5.4.1
for further discussion.
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Figure 5.4: Trajectories of the J factor for different orbital shapes. The J factor oscillates with the
orbital period; the dashed lines show fits using Eq. (5.7) (for |d lnJ/d ln t| < 1).

initial decay rate of the J factor, described by the parameter b in Eq. (5.7), without altering the rate

at which the decay slows over time. This figure also shows more clearly that there is a steepness

limit to the decay of the J factor:

d lnJ

d ln t
' −min

{
bn1−c, B

}
, (5.9)

where B ∼ O(1).

5.3.2 Physical interpretation

Behavior similar to that of Eq. (5.9) can be reproduced in a toy model. Suppose the subhalo has

potential φ(r) ∝ rγ up to an additive constant; for instance, an NFW profile would have γ = 1 for

r � rs. Now discretize time, perhaps as a count of orbits, letting rn be the radius of the subhalo’s

outer boundary at time tn. Any material outside rn at time tn is free, fixing the additive constant

in the potential such that φn(r) ∝ rγ − rγn (where φ ≥ 0 implies freedom). Now suppose that at

each time step, particles in the subhalo experience an injection of energy ∆E ∝ rα due to tidal

forces, and any radius with ∆E + φ > 0 no longer belongs to the halo. For instance, if the time step

is constant, then α = 2 since the energy injection is proportional to the square of the tidal force,

which is in turn proportional to the radius. This tidal heating rule leads to the evolution equation
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Figure 5.5: The impact of orbit shape on the J-factor trajectory. This figure plots the logarithmic
slope of the orbital period-averaged trajectory to make the trends clearer. Notably, the slope runs
more rapidly for more eccentric orbits. The points show the simulation results, while the lines
correspond to fits using Eq. (5.7) (for |d lnJ/d ln t| < 1).

φn(rn+1) + ∆E(rn+1) = 0, or

rγn+1 − rγn + frαn+1 = 0, (5.10)

where f incorporates all of the proportionality constants.

For simplicity, we may assume r0 = 1, absorbing its dimensionful value into f . For α > γ,

Eq. (5.10) obeys

∆ ln r

∆ lnn
'





−fn/γ, fn� 1,

−1/(α− γ), fn� 1,

(5.11)

where ∆ denotes the discrete difference across time steps. If J ∝ rβ , then

∆ lnJ

∆ lnn
' −min {bn,B} (5.12)

with b = βf/γ and B = β/(α− γ). The quantity fn can be understood as (up to factors of order

unity) the ratio of the tidal energy injection to the subhalo’s internal energy. The two separate

regimes arise physically because when fn � 1, the total radius change |rn − r0| � r0. Since the

radius does not change appreciably, the efficiency of tidal heating does not change, so r and J drop
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Figure 5.6: The impact of the orbital radius on the J-factor trajectory. Top: The J-factor trajectory
as in Fig. 5.4 (solid lines); the dashed lines show fits using Eq. (5.7). Bottom: The logarithmic slope
of the orbital period-averaged trajectory, as in Fig. 5.5; the points show the simulation results, while
the lines correspond to the fits. We only fit the trajectories that do not pass |d lnJ/d ln t| = 1.

by the same fraction in each orbit. However, when fn� 1, |rn − r0| ∼ r0. In this case, the radius is

decreasing significantly, which implies that the density at the halo’s shrinking outer boundary is

increasing and hence that the halo is becoming more difficult to strip.

This toy model has reproduced Eq. (5.7) with c = 0, successfully explaining the apparent upper

limit in |d ln J/d ln t|. We remark, however, that there is another, completely different, physical

reason to expect an upper limit in |d ln J/d ln t|: an unbound tidal stream grows in length L as L ∝ t.

Hence, its volume grows as V ∝ t, so its J factor drops as J ∝M2/V ∝ t−1. Once a subhalo has

been stripped to the point that its own J factor is dwarfed by that of its tidal stream, the J factor

of the subhalo remnant decays as J ∝ t−1. The combination of these two processes—the increasing
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density of the subhalo as its radius drops and the J factor of its tidal stream—may explain the

behavior in Figs. 5.5 and 5.6 wherein |d ln J/d ln t| initially shallows toward some value larger than

1 before subsequently returning back to 1. Note, however, that the precise evolution of the J factor

in the |d ln J/d ln t| ∼ 1 regime is of little consequence. By this point, the subhalo has already lost

most of its J factor and contributes little to annihilation signals.

The physical explanation for the c > 0 behavior observed in the simulations remains unclear.

However, it is necessarily connected to how the shape of the subhalo’s density profile changes in

response to tidal effects (see Fig. 5.2), which the toy model does not account for. In a more complete

picture, the rate dJ/dn of tidal evolution should be sensitive only to the instantaneous host-subhalo

system with no explicit dependence on the time n. Hence, it should be possible to replace the factor

n−c in Eq. (5.8) with a function of the subhalo’s density profile (and other properties of the system).

However, in the |d ln J/d ln t| < 1 regime, the total change in J is much smaller than J itself, and if

we neglect changes in the shape of the density profile, then any parameter of the density profile (e.g.,

ρs or rs) must experience a similarly small change. Since the factor n−c can change by an order

of magnitude in the same regime, it is not possible, except in a very contrived way, to replace this

factor with a function of the density profile.

Thus, the c > 0 behavior must follow from changes in the density profile’s shape. As a result of

these changes, the density profile picks up new parameters that can potentially vary wildly without

significantly altering J , and the factor n−c can be replaced with a function of those parameters. For

instance, by introducing a new parameter q, we can write

1

J

dJ

dn
= −bq, 1

q

dq

dn
= −cq1/c. (5.13)

This system no longer has explicit time dependence, but if q = 1 when n = 1, then it is equivalent

to Eq. (5.8).

5.4 Modeling the tidal evolution

Motivated by the results of the previous section, we seek a model of the form

ln
J

Jinit
= b

[
a− 1

1− c
(
n1−c − 1

)]
(5.14)
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Figure 5.7: These figures summarize the 52 simulations we use to tune our model. Top: The
simulations distributed in the host-subhalo system parameters. Bottom: The simulations distributed
in the reduced parameters x, y, and z (see the text). Simulations with x . 1 are not included in this
sample because they lead to |d ln J/d ln t| ≥ 1 too quickly. The radius of each marker is proportional
to the number of orbital periods, which ranges from 5 to 20.

for the case where |d ln J/d ln t| < 1. The parameters b and c follow immediately from Eq. (5.7), and

we have inserted another parameter a to fix the overall normalization. Our goal is now to relate

a, b, and c to the parameters of the host-subhalo system. For this purpose, we use the results of

52 idealized N -body simulations that we carried out as described in Sec. 5.2. The parameter space

covered by these simulations is depicted in Fig. 5.7.

For each simulation we obtain the trajectory of the subhalo’s J factor, stopping if |d lnJ/d ln t| ≥ 1

or otherwise at an arbitrarily chosen simulation termination time. As we discussed in the previous

section, the evolutionary behavior changes markedly when |d lnJ/d ln t| ≥ 1, but precise predictions

in this regime are unnecessary. Next, we convolve the J-factor trajectory in log space with a top-hat
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Figure 5.8: Demonstration of the fitting procedure for J-factor trajectories. The trajectory (thin
oscillating line) obtained from the simulation is smoothed (thick line) using a top-hat filter with
width equal to the orbital period. Equation (5.14) is fit (dashed line) to the smoothed trajectory.

filter of width equal to the radial (apocenter-to-apocenter) orbit period.10 This step suppresses

the influence of the periodic oscillatory behavior observed in Sec. 5.3; we are effectively finding

the moving logarithmic average of J over this period. Finally, we fit Eq. (5.14) to this smoothed

trajectory of J , but we only employ times after the end of the first radial period (so the first point is

at n = 1.5, whose corresponding J factor averages from n = 1 to n = 2). This restriction is intended

to remove the influence of any transient effects associated with suddenly turning on the tidal field.

Additionally, in case the smoothing procedure fails to fully suppress periodic effects, we minimize

any resulting bias by ending the fit at an integer number of orbits (so for instance, we might end at

n = 15.5, corresponding to the average J from n = 15 to n = 16). The number of radial orbits fit

through this procedure is represented in Fig. 5.7 as the marker size; this number is a proxy for how

much information that simulation provides.11 Figure 5.8 illustrates the procedure; the smoothing

filter suppresses oscillations quite effectively.

5.4.1 Parameter b: The initial J-factor decay rate

From Fig. 5.6 we anticipate that b should depend strongly on the orbital radius. For simplicity

we first study the self-similar regime, Rc � Rs. The upper panel of Fig. 5.9 plots b against the

reduced orbital radius x̃ for the 36 of our simulations that satisfy Rc/Rs < 0.3. While b is strongly

10For circular orbits the radial orbit period is ill defined, and we substitute its limit as the orbit approaches circular as
obtained using the fitting form in Appendix D.3.

11When performing fits, we weight a simulation spanning n orbits by
√
n.
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Figure 5.9: The dependence of the trajectory parameter b on system parameters in the self-similar
regime (Rc/Rs � 1). Top: There is a trend between b and x̃, but it is polluted by residual sensitivity
to the orbit-shape parameter η. Bottom: b is a power law in x with little residual sensitivity to the
orbit shape, and the best fit is plotted as a solid line. The color scale is the same for both panels.
Each marker is a simulation, and the marker radius is proportional to the number of orbital periods,
which ranges from 7 to 20 for this sample.

sensitive to x̃, there is also significant sensitivity to the orbital shape, parametrized by η. However,

it turns out that we can eliminate the shape dependence of b by defining the reduced orbital radius

more carefully.

We first remark that x̃ ∼ |Eb|/∆E, where Eb is the binding energy of a particle at the subhalo’s

initial scale radius rs and ∆E is the energy injected into that particle by tidal forces over the

subhalo’s orbital period. To see this, observe that the particle’s binding energy is

Eb = −4π(ln 2)Gρsr
2
s (5.15)

(per mass). Meanwhile, the tidal acceleration on this particle is roughly (rs/R)F , where R is the

subhalo’s orbital radius and F is the host force (per mass) at radius R. In the self-similar regime,
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F ∼ GPsRs. The total velocity injected into the particle is ∆v ∼ FT , where T is the subhalo orbital

period. Since T ∼
√
R/F , the energy injection (per mass) is ∆E ∼ (∆v)2 ∼ GPsRsr2

s/R, and since

R ∼ Rc, this leads to |Eb|/∆E ∼ x̃.

With this motivation, we define

x ≡ |Eb|/∆Eimp (5.16)

as a more exact version of x̃. Here, ∆Eimp is the energy injection per orbit on a particle at rs

computed using the impulse approximation as in Ref. [425]. In this approximation, the subhalo

particle is treated as stationary while Eq. (5.3) is integrated to find the velocity (and hence energy)

injection. We supply a fitting formula for ∆Eimp in Appendix D.3 for convenience. As intuition, x is

of order the ratio

x ∼ ρs/P̄ (<Rc) (5.17)

between the subhalo’s density and the average host density within the subhalo’s orbital radius, a

connection that follows from the observation that ∆Eimp/r
2
s ∼ F (Rc)/Rc (see Appendix D.3). In

the bottom panel of Fig. 5.9 we plot b against x for the self-similar regime. Evidently, our definition

of x captures most or all of the sensitivity of the parameter b to the orbit shape, and

b = b0x
−b1 , if Rc � Rs, (5.18)

with b0 = 0.58 and b1 = 0.58. This success is remarkable; the approximation that subhalo particles

are stationary during the application of tidal forces can only be valid for highly eccentric orbits, and

yet the impulsive energy calculation accurately predicts the tidal evolution for more circular orbits

as well.

To complete our understanding of the parameter b we must move beyond the self-similar regime.

In the upper panel of Fig. 5.10, we plot b against x for all of our simulated subhalos. The color scale

indicates the time-averaged orbital radius R̄ in units of Rs. It appears that the effect of leaving the

self-similar regime is to alter the normalization of b while keeping the power-law sensitivity to x

unchanged. In particular, we may write

b = b0x
−b1 [1 + b2f(y)] , (5.19)
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Figure 5.10: The dependence of b on x and y. Top: At each radius y = R̄/Rs, b appears to follow
a similar power law in x with a different normalization. The solid line is duplicated from Fig. 5.9.
Bottom: Scaling of the normalization of b with radius y. The best fit is plotted, with f(y) defined in
Eq. (5.21). Each marker is a simulation, and the marker radius is proportional to the number of
orbital periods, which ranges from 5 to 20.

for some function f(y) and parameter b2, where we define

y ≡ R̄/Rs. (5.20)

For convenience, we supply a fitting formula for R̄ in Appendix D.3. While we could use the circular

orbit radius Rc instead, we favor R̄ because its physical significance is clearer.

To define the function f(y), we consider the physical impact of leaving the self-similar regime.

The magnitudes of the tidal forces are altered, but this effect should be accounted for by the definition

of x. However, the directions of the tidal forces also change. In particular, Eq. (5.3) implies that

there are stretching tidal forces proportional to dF/dR along the radial axis from the host and

compressive tidal forces proportional to F/R along the perpendicular directions. When the host force
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profile F (R) is self-similar, the ratio between the stretching and compressive forces is fixed.12 Beyond

the self-similar regime, however, the ratio between these forces can change. With this motivation,

we define f(R/Rs) ≡ (dF/dR)/(F/R) as this ratio. For the NFW profile this definition implies that

f(y) =
2 ln(1 + y)− y(2 + 3y)/(1 + y)2

ln(1 + y)− y/(1 + y)
. (5.21)

In the bottom panel of Fig. 5.10, we plot b/(b0x−b1) against y for the purpose of tuning the parameter

b2 in Eq. (5.19). We find that this equation13 works reasonably well, and we obtain b2 = 1.29. The

introduction of stretching tidal forces increases the efficiency of tidal effects, which is reflected as an

increase in the decay rate b of the J factor.

5.4.2 Parameter a: The J-factor normalization

We next handle the overall normalization of J/Jinit. According to Eq. (5.14), the J factor changes

by the factor eab after the first orbit, which is sensitive to a second parameter: a. Because of the way

we defined this parameter, it turns that a is almost wholly sensitive to y = R̄/Rs alone. Figure 5.11

plots a against y for all of our simulations, and we find that with only moderate scatter,

a = a0 − a1f(y) (5.22)

with a0 = 0.44 and a1 = 1.32.

In some sense, the parameter a describes the initial behavior of the subhalo as it equilibrates—to

the extent that this is possible—into the tidal field generated by the host. When y � 1 all nonzero

tidal forces are compressive, so the J factor is initially slightly boosted (a > 0). However, when

y & 1, the stretching tidal forces cause the J factor to be initially suppressed (a < 0). Note that the

trajectory given by Eq. (5.14) is only valid after this equilibration takes place, so it is not valid for

n < 1.

12In fact, for an NFW profile, dF/dR = 0 when R� Rs.
13The force-ratio argument motivates any expression of the form [1 + b2f(y)α]β , but we assume for simplicity that
α = β = 1.

114



10−2 10−1 100 101

y = R̄/Rs

−1

0

1

a

a = 0.44 − 1.32f(y)

100 101 102
x
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best-fitting curve is plotted as a solid line using the definition of f(y) in Eq. (5.21). Each marker is
a simulation, and the marker radius is proportional to the number of orbital periods, which ranges
from 5 to 20.

5.4.3 Parameter c: The loss of tidal efficiency

Finally, we address the parameter c that characterizes the drop in the efficiency of tidal effects

over time. As we found in Sec. 5.3, c is sensitive to the orbit shape; more eccentric orbits yield smaller

values of c while more circular orbits yield larger values. In the self-similar regime we could write c as

a function of η, since η completely describes the orbit shape. However, beyond this regime, orbits with

the same η could have different shapes. Thus, to accurately describe the sensitivity of the parameter

c to the host-subhalo system, it is necessary to find the correct orbit-shape parametrization.

We argued in Sec. 5.3 that the loss of tidal efficiency encoded in c is related to changes in the

shape of the subhalo density profile. The connection to the orbital shape is that circular orbits

tidally heat material more predominantly in the outskirts of the subhalo, while eccentric orbits can

alter the density profile further inward. This tendency is illustrated in Fig. 5.12, which depicts

the tidally altered density profiles of two subhalos with different orbit shapes. The subhalo on the

circular orbit loses more material from its outskirts, while the subhalo on the eccentric orbit loses

more material from its interior.

Differences in the radii at which material is heated can be understood in terms of adiabatic

shielding (e.g., Refs. [426–429]). Deep within the subhalo, the internal dynamical timescale is much

shorter than the timescale over which the external tidal field changes. In this case, the conservation

of adiabatic invariants prevents any energy injection by tidal forces; these radii are adiabatically
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Figure 5.12: The influence of the shape of a subhalo’s orbit on its density profile after tidal evolution.
One subhalo is on a highly eccentric orbit (η = 0.1) while the other its on a circular orbit; we plot
the density profiles after 4 and 14 orbits. The key difference is that the circular orbit strips material
primarily from the outskirts, while the eccentric orbit strips more material from the interior. This
difference can be understood in terms of the adiabatic shielding radius ra and its comparison to the
tidal radius rt (see the text), shown as dotted lines for both orbits. The subhalos are chosen to yield
similar density profiles and do not have the same energy parameter x.

shielded. Meanwhile, adiabatic shielding is connected to the shape of the subhalo’s orbit. The

timescale over which tidal forces change is related to the timescale of the pericenter passage, which

can be very short for highly eccentric orbits.

Up to factors of order unity, the subhalo’s internal dynamical timescale is tdyn ∼ (Gm(r)/r3)−1/2

at radius r, where m(r) is the subhalo mass profile [392]. Meanwhile, the pericenter passage timescale

is tp ∼ Rp/Vp, where Rp and Vp are the radius and velocity at the pericenter, respectively. To make

precise the connection between the orbit shape and the radii at which tidal heating is efficient, we

define the adiabatic shielding radius ra as the radius at which tdyn = tp. This definition motivates a

characteristic density scale

ρa ≡
V 2
p

GR2
p

= η2M(Rc)Rc
R4
p

, (5.23)

so that ra is the radius at which m(ra)/r
3
a = ρa. Note that we used the definitions of the circular

orbit radius Rc and orbit circularity η to eliminate Vp from Eq. (5.23); M(R) is the host mass profile

at radius R.

To quantify changes in the shape of the subhalo density profile, we can compare the radius ra

below which material is shielded to the tidal radius rt above which all material is stripped. The

tidal radius is the radius above which the tidal force from the host exceeds the gravitational force
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from the subhalo. There are several definitions of the tidal radius in the literature, but they are

all related to the expression [430, 431] rt = R[m(rt)/M(R)]1/3 by (possibly nonconstant) factors of

order unity (see, e.g., Ref. [328]). The tidal radius is only well defined for circular orbits, but it is

common to apply the concept to eccentric orbits as well [328]. In particular, if we seek the radius

above which all material is stripped, we can define the tidal radius rt using the orbital apocenter

radius Ra. In this case, there is a characteristic density scale

ρt ≡M(Ra)/R
3
a, (5.24)

and rt is the solution to m(rt)/r
3
t = ρt.

Anticipating that the drop in the efficiency of tidal effects encoded in the parameter c is a

consequence of changes to the shape of the subhalo density profile, we may hypothesize that c is

sensitive to the ratio

z ≡ ra/rt, (5.25)

which ranges from 0 for radial orbits to 1 for circular orbits. For simplicity, in defining z we employ

the subhalo’s initial NFW mass profile [see Eq. (D.6)]. Figure 5.13 shows the relationship between c

and z; there is some scatter, but the trend is that14

c = c0z
c1 (5.26)

with c0 = 0.73 and c1 = 0.21. Note that z is not solely a function of the subhalo’s orbit. Because

it depends on the subhalo mass profile m(r), it is also sensitive to the density ratio ρs/Ps. We

explored using ρt/ρa, a purely orbital parameter, instead of ra/rt. This parameter exhibited a similar

power-law relationship with c, but it left significant residual sensitivity to the parameter x, which is

related to ρs/Ps. Using z = ra/rt mostly eliminates that sensitivity.

14We argued in Sec. 5.3.2 that c > 0 is connected to changes in the density profile’s shape. In this light, Eq. (5.26)
implies that in the limit z = 0 where the tidal energy injection is completely impulsive, the shape of the density
profile does not change over successive orbits. This notion is consistent with the results of Ref. [432], which found
that impulsive point-object encounters yield a universal density profile.
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Figure 5.13: The dependence of the trajectory parameter c on the system parameter z = ra/rt. With
moderate scatter, c follows a power law in z, shown as the solid line. Each marker is a simulation,
and the marker radius is proportional to the number of orbital periods, which ranges from 5 to 20.

5.5 Model summary and discussion

In the last section, we developed a model for the evolution of a subhalo’s J factor due to tidal

effects as a function of parameters of the host-subhalo system. As long as the J factor decays slower

than |d lnJ/d ln t| = 1, its trajectory is well fit by the expression

ln
J

Jinit
= b

[
a− 1

1− c
(
n1−c − 1

)]
. (5.14)

Here, n = t/T is the number of subhalo orbits, and a, b, and c are parameters that depend on the

host-subhalo reduced system parameters x, y, and z through

a = a0 − a1f(y), (5.22)

b = b0x
−b1 [1 + b2f(y)] , (5.19)

c = c0z
c1 (5.26)

with a0 = 0.44, a1 = 1.32, b0 = 0.58, b1 = 0.58, b2 = 1.29, c0 = 0.73, and c1 = 0.21. In Appendix D.3,

we detail how to compute x, y, z, and T from the subhalo parameters rs and ρs, host parameters

Rs and Ps, and orbital parameters Rc and η.

Equation (5.14) applies only when |d lnJ/d ln t| < 1. The J factor’s precise behavior when

|d ln J/d ln t| & 1 is of little consequence, as the subhalos in this regime contribute only minimally

to aggregate annihilation signals. Nevertheless, it is useful to have an approximate treatment in
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this regime. As we discussed in Sec. 5.3, when |d ln J/d ln t| ≥ 1 it is a reasonable approximation to

enforce −d lnJ/d ln t = 1, i.e., J ∝ n−1. We define

n1 = b1/(c−1) (5.27)

as the orbit count at which −d ln J/d ln t = 1. Additionally, when b > 1 (so n1 < 1), we cannot

expect our treatment of the normalization of J (Sec. 5.4.2) to be accurate. To handle these issues,

we can write

J

Jinit
=





exp
{
b
[
a− 1

1−c
(
n1−c−1

)]}
, if n ≤ n1, b < 1,

exp
{
b
[
a− 1

1−c
(

1
b − 1

)]}
n1
n , if n > n1, b < 1,

ea/n, if b ≥ 1,

(5.28)

where the last case follows from continuity considerations. We further note that this equation is

valid only when n ≥ 1 (see Sec. 5.4.2).

One can now use our model to understand the emission from a host halo due to dark matter

annihilation in subhalos. In particular, one can sample subhalos from an orbital distribution in Rc

and η (e.g., Refs. [408, 413, 433–436]). Accounting for tidal evolution, each subhalo’s contribution to

the dark matter annihilation signal is then scaled by the orbit-dependent function given by Eq. (5.28).

In Ref. [437] (in preparation), we will use this model to study the annihilation signature arising from

the extreme-density microhalos that result from certain early-Universe scenarios. In this case, the

orbital distribution of subhalos is the same as that of particles, and one may employ the host halo’s

distribution function (e.g., Ref. [422]) to sample subhalo orbits.

Our model does not include the periodic oscillations in the J factor observed in Sec. 5.3. These

oscillations do not affect the overall annihilation rate in subhalos, but they still introduce a systematic

biasing effect where subhalos at smaller radii have larger J , and this effect can alter the morphology

of an annihilation signal. However, we remark that these oscillations only have a significant amplitude

in the Rc � Rs regime, when all tidal forces are compressive, and at small x . 10. Because of these

restrictions, we anticipate that their impact is minor. However, in forthcoming work [437] we will

quantify the impact of these oscillations.

We also address another potential limitation to our model. The differential equation driving
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it, Eq. (5.8), has explicit time dependence in the factor n−c, so the resulting tidal evolution is not

completely determined by the system’s instantaneous state. Physically, we view n−c as a proxy

for unknown physical variables [e.g., Eq. (5.13)], and as long as the host halo’s density profile and

the subhalo’s orbit are static, this formulation poses no difficulty. Since halos grow from the inside

outward, subsequent accretion is not expected to significantly alter the density profile of a host

halo at the radii of already-present subhalos, so the host halo is generally expected to remain static.

Moreover, if dynamical friction is negligible [see Eq. (5.5)], the subhalo’s orbit is also static. However,

there is a scenario where a subhalo’s host is expected to change dramatically. If the host is itself a

satellite of a larger host halo, then the subhalo may be tidally stripped from its host, becoming itself

a satellite of the superhost. In this scenario, it is not obvious how to continue the subhalo’s tidal

evolution.

If the initial host-subhalo system yields trajectory parameters a′, b′, and c′ and the new host-

subhalo system yields parameters a, b, and c, then a self-consistent way to treat this problem is to

substitute the factor n−c in Eq. (5.8) with (n+ n′c
′/c)−c and integrate the resulting expression. This

treatment follows from the assumption that the parameter q = n−c in Eq. (5.13) is a function of the

subhalo alone. Additionally, the J factor should be rescaled by eba−b
′a′ , a consideration motivated by

the discussion in Sec. 5.4.2. However, it turns out that while this treatment works reasonably well for

a portion of the a′, b′, c′, a, b, c parameter space, it does not accurately predict every scenario; the

parameter q in Eq. (5.13) is not a function of the subhalo alone. We leave a detailed investigation of

this problem to future work.

As another caveat, the long-term accuracy of the trajectory in Eq. (5.14) relies on the assumption

that the efficiency of tidal effects follows precisely the power law n−c, as described by Eq. (5.8).

While such a power law is a natural assumption [e.g, Eq. (5.13)] and is borne out in our simulations,

it does not have a direct physical motivation; tidal heating models considered in Sec. 5.3.2 and

elsewhere [416] can only reproduce c = 0. Without such motivation it is unclear that this power-law

behavior should extend beyond the n = 20 orbits of our longest simulations. Also, the system

parameter z = ra/rt that sets the power-law index c is defined based on two concepts that are not

themselves entirely well defined: the adiabatic shielding radius ra and the tidal radius rt. Moreover,

since our model does not predict the larger evolution of the subhalo density profile, we use the

subhalo’s initial density profile to define ra and rt even though the density profile quickly begins to
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change. For these reasons, we anticipate that it is possible to find a better-motivated parameter to

replace z = ra/rt.

Nevertheless, this model describes the results of our simulations with remarkable success. As

further validation, we consider the library of idealized subhalo simulations, called DASH (for

dynamical aspects of subhaloes), published by Ref. [342]. These simulations have a lower resolution

than ours, but because of the extraordinary volume of this library, it still supplies a valuable test for

our model. In Appendix D.4 we verify that modulo substantial scatter and certain systematic effects

associated with their lower resolution, the DASH simulations are consistent with our model.

5.6 Comparison to previous work

Numerous prior works have endeavored to model the impact of tidal effects on a subhalo’s

dynamical evolution [340, 341, 410–417]. In this section, we explore how our results compare to

those of previous studies. Motivated primarily by simulations, our model is based on the notion that

a subhalo’s J-factor evolution is determined by

1

J

dJ

dn
= −bn−c, (5.8)

where b and c are functions of the host-subhalo system and n counts the number of orbits. In

contrast to our focus on the J factor, previous works have largely focused on the evolution of a

subhalo’s total bound mass mbound and of its maximum circular velocity vmax and corresponding

radius rmax. However, the general form of our model is not specific to the J factor, and we show in

Appendix D.5 that it can also describe the evolution of vmax, rmax, and mbound.

Despite the broad applicability of our model suggested by Appendix D.5, no prior work (to our

knowledge) has proposed tidal evolution of the form given in Eq. (5.8). Broadly, prior models of

tidal evolution fall into two main categories, although a given work may employ more than one:

(1) Tidal stripping models, where material outside the characteristic tidal radius [e.g., Eq. (5.24)]

is assumed to be stripped over some time period;

(2) Tidal heating models, where energy injected by tidal forces heats subhalo material, causing it

to rise and possibly become freed from the subhalo.

We found in Sec. 5.4.1 that the parameter b in Eq. (5.8), which characterizes the rate of tidal
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evolution, is tightly sensitive to the energy injected by tidal forces (see Fig. 5.9). Additionally, we

observed in Sec. 5.3 that the tidal evolution in our simulations closely resembles that predicted by

a toy model of tidal heating. Consequently, we anticipate that of the two classes of models, tidal

heating models should yield results most similar to those of our model. We will first compare the

results of our model to those of the tidal heating model developed by Ref. [416], hereafter P14.

However, prior treatments of dark matter annihilation within subhalos predominantly treat the

impact of the host halo’s tidal forces using models based on tidal stripping [224, 347, 348, 404–407].

Tidal stripping models cannot prescribe how to change a subhalo’s density profile below the tidal

radius, but it is possible to apply a simulation-tuned prescription for how the density profile responds

to mass loss [340, 341]. We will subsequently compare the results of our model to those of a

tidal stripping model developed by Ref. [417] (hereafter J16), using the prescription of Ref. [341]

(hereafter P10) to predict the subhalo’s density profile. This pair of models has been employed by

Refs. [347, 407] to predict dark matter annihilation rates in subhalos.

5.6.1 Comparison to a tidal heating model

We first compare our model’s predictions to those of the analytic tidal heating model given in

P14. In the tidal heating picture, energy injected by tidal forces causes subhalo material to move

to higher radii, and P14 employed the assumption of virial equilibrium to predict this change in

radius and consequently the subhalo’s new density profile. We follow the prescription in P1415 to

compute the evolution of a subhalo’s density profile, subsequently integrating it to obtain the J

factor. Figure 5.14 shows a sample of the resulting J-factor trajectories, and we compare those

trajectories to our model’s predictions and to the results of our simulations. Generally, we find that

for a model constructed from first principles, the P14 model is remarkably accurate. However, it

does not fully capture the sensitivity of tidal evolution to system parameters, a matter we explore

next.

The quantity Q = ∆E/r2 employed by P14 is related to host-subhalo system parameters by

Q/(Gρs) = 4π(ln 2)N/x, where N is the number of orbits over which the energy injection is taken

and x is the system parameter (see Sec. 5.4). For our comparison, we take N = 1 and iterate the

15For simplicity, we compute the energy injection ∆E directly using the impulse approximation (Appendix D.3),
neglecting additional corrections suggested in P14; these corrections will not qualitatively alter the results.
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Figure 5.14: A comparison between our tidal evolution model (solid lines) and the analytic tidal
heating model developed in Ref. [416] (P14, dashed lines). This figure shows the J-factor trajectory
and its logarithmic derivative for different host-subhalo parameters (x, y, z), listed on the figure.
We also show our simulation results (as circles) for these parameters. The P14 predictions exhibit
the correct trends, but they are only reasonably accurate for a small range of host-subhalo system
parameters.

calculation, assuming the halo revirializes during each orbit. Since the density profile evolution in

P14 is only sensitive to the ratio Q/(Gρs), we see immediately that this model’s predictions are

sensitive only to the system parameter x and are insensitive to y and z. Additionally, the J-factor

evolution predicted by P14 turns out to be only sensitive to x in the combination n/x, where n = t/T

is the number of orbits, so every system follows the same trajectory rescaled in time. In this respect,

the P14 model is similar to the toy model we explored in Sec. 5.3.2, which was only sensitive to the

combination fn of system parameters f and orbit count n. In fact, the P14 model approximately

obeys the toy model solution Eq. (5.12) with b ' 3.2/x and B = 1, but it can potentially transition

between the n/x� 1 and n/x� 1 regimes extremely slowly, and all behavior seen in Fig. 5.14 is in

the intermediate regime.
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The combination of its single time-rescaled trajectory and its insensitivity to y and z leaves the

P14 model unable to accurately predict tidal evolution in the full host-subhalo parameter space. We

see evidence of this deficiency in Fig. 5.14, but we further note that we did not plot any subhalos

in the y � 1 regime. In this regime, the P14 model dramatically overestimates the impact of tidal

stripping since it does not account for the directions of tidal forces, which are encapsulated in the

parameter y. While the P14 model yields reasonably accurate predictions over a small range of

host-subhalo system parameters, our model can accurately predict the evolution of a much broader

variety of systems.

5.6.2 Comparison to a tidal stripping model

Finally, we compare our model to a semianalytic model of tidal stripping that has been employed

in previous calculations of annihilation rates in the substructure [347, 407]. This semianalytic model

uses the tidal stripping model in J16 to characterize a subhalo’s mass loss, subsequently using the

results of P10 to connect this mass loss to the subhalo’s density profile and hence annihilation signal.

In J16, the rate of mass loss for subhalos of mass m inside a host halo of mass M , averaged over

subhalo orbits, is modeled using
dm

dt
= −A m

tdyn

(m
M

)ζ
. (5.29)

Here, A and ζ are simulation-tuned parameters and tdyn is the host’s dynamical timescale at its

virial radius (e.g., Ref. [392]). For this comparison we adopt J16’s central values A = 0.86 and

ζ = 0.07.

In P10, it is shown that the subhalo’s maximum circular velocity vmax and the radius rmax at which

it is attained are related to the fraction m/macc of the subhalo’s mass that remains gravitationally

bound, where macc is the subhalo’s virial mass at accretion. We confirm in Appendix D.5 that

these relations are reasonably accurate if y > 1 and the subhalos have concentration rvir/rs ' 20

at accretion. If we assume that subhalos possess NFW profiles, then the mass fraction m/macc

predicted by J16 thereby determines each subhalo’s J factor.

To compare our model, we employ the same subhalo orbital distribution considered in J16, which

is drawn from Ref. [413]. The circular orbit radius Rc is taken to be uniformly distributed between

0.6Rvir and Rvir, where Rvir is the host’s virial radius. Meanwhile, the circularity η is distributed

proportionally to sinπη, and we assume that the distributions of Rc and η are independent. By
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Figure 5.15: A comparison between our tidal evolution model and the semianalytic model developed
in Refs. [417] (J16) and [341] (P10). This figure shows the orbit-averaged J-factor trajectory of
subhalos of mass m and concentration csub within a host halo of mass M and concentration chost.
Compared to our model, the semianalytic model underestimates the impact of tidal stripping early
on while overestimating its impact at late times. Since the plotted trajectories are averaged over
subhalo orbits, we cannot plot simulation results for comparison; nevertheless, Fig. 5.14 illustrates
that our model matches simulation results reasonably well.

drawing subhalo orbits from this distribution, we are able to compute the orbit-averaged16 value

of J/Jinit using our model given in Eq. (5.28). In Fig. 5.15, we plot the resulting orbit-averaged

J-factor trajectories along with those predicted by the semianalytic model of J16 and P10. We

consider two different host-subhalo systems, listed on the figure, and since the semianalytic model is

sensitive to the total virial masses of the host and subhalo, we employ the concentration parameter

c ≡ rvir/rs to describe these systems; chost is the host halo’s concentration, while csub is the subhalo’s

concentration when it is accreted.

Compared to our model, Fig. 5.15 shows that the semianalytic model underestimates the impact

of tidal forces early on while overestimating their impact at late times. These discrepancies arise

from several sources. As we show in Appendix D.5, a subhalo’s J factor after tidal evolution is about

30% smaller than what would be predicted from its parameters rmax and vmax assuming an NFW

profile. However, this source of error is relatively minor. The main differences arise from the model

in J16 given by Eq. (5.29). Since this model does not account for the subhalo’s density profile, it

takes too long to strip the subhalo’s weakly bound outskirts (beyond rs) that contribute little to

16Specifically, we take the median J/Jinit at each time, but using the mean or the logarithmic mean instead does not
significantly alter the results.
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annihilation rates.17 This behavior partially explains why the semianalytic model underestimates

the early impact of tidal effects. Meanwhile, for small ζ � 1, Eq. (5.29) describes nearly exponential

decay, analogous to our model, Eq. (5.8), with c = 0. Without the braking behavior contributed by

c > 0 (and attributed to changes in the shape of the subhalo’s density profile; see Sec. 5.3) along

with the limiting |d ln J/d ln t| ∼ 1 behavior, the semianalytic model overestimates the impact of

tidal effects at late times. For these reasons, our simulation-tuned model supplies significantly more

accurate predictions of subhalo annihilation rates.

5.7 Conclusion

In this work, we used 52 idealized N -body simulations to develop a model that can predict the

impact of a host halo’s tidal forces on the rates of dark matter annihilation within its subhalos.

Our model is given by Eq. (5.28) and summarized in Sec. 5.5, and it predicts the evolution of

the subhalo’s J factor, the factor in the annihilation rate that depends on mass distribution, as a

function of the subhalo’s orbit and other properties of the host-subhalo system. These properties are

distilled into three physically motivated variables x, y, and z that characterize the energy injected by

tidal forces, the ratio of stretching to compressive tidal forces, and the radial distribution of tidally

heated material, respectively. Appendix D.3 details how to compute these variables from standard

properties of the host-subhalo system.

Our model is based on the notion that for sufficiently small changes in J , the J factor evolves

according to
1

J

dJ

dn
= −bn−c, (5.8)

where n = t/T is the time in units of the subhalo’s orbital period and b and c are parameters that

depend on the system. If c = 0, Eq. (5.8) states that the subhalo loses a fixed fraction e−b of its J

factor in each orbit. The parameter c ≥ 0 is motivated by simulation results and adds a braking

mechanism to the J factor’s decay. To our knowledge, a model of this form has not previously

been put forward, even though we find that it can also describe other structural properties of the

17For the two cases shown in Fig. 5.15, it takes, respectively, 6 and 3 dynamical times for the J16 model to bring
the subhalo’s bound mass below its initial mmax, the mass enclosed within the radius rmax at which the maximum
circular velocity is attained. As we find in Appendix D.5 (see Fig. D.6), the drop in the J factor is minimal above
this mass threshold.
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subhalo. We also find that our model predicts significantly different J-factor trajectories than prior

semianalytic models. We further validate our model by testing it against the publicly available

DASH library of subhalo simulations [342], finding reasonable agreement.

Our model has limitations. As presented, it is restricted to host-subhalo systems in which

both halos possess NFW density profiles. The NFW profile (possibly with minor corrections; e.g.,

Ref. [337]) arises generically in dark matter simulations of halos built by hierarchical clustering

[205, 260]. However, the smallest subhalos, forming by direct collapse, exhibit steeper density

profiles [26, 226, 261–266, 336]. Additionally, the density profiles of many galactic halos (but not

all [421]) are inferred to be shallower than the NFW profile, an observation that may be explained

by baryonic effects or unknown dark matter properties (see Refs. [396, 438] for reviews). Despite

being developed using NFW profiles, we anticipate that the physical manner in which we defined

the model parameters x, y, and z implies that our model can be adapted to accommodate different

host or subhalo density profiles.

Also, our model only accounts for tidal forces from the host halo. Subhalos can also be disrupted

by encounters with other subhalos, but the results of Ref. [328] suggest that this effect is subdominant.

More importantly, subhalos can be affected by baryonic content residing within the host, such as

stars (e.g., Refs. [264, 322–327, 400, 432, 439]) or a disk (e.g., Refs. [322, 327, 405, 410, 439–445]).

These effects are not included in our model and must be accounted for separately. However, we

remark that many of the dwarf spheroidal galaxies, already some of the most promising targets for

dark matter annihilation searches [344], have such little baryonic content (e.g., Ref. [446]) that it

may be possible to neglect the influence of this content on their subhalos.

Despite these limitations, we anticipate that our model will prove useful in understanding the

annihilation signals of dark matter substructure. In Chapter 7, we will explore the consequences of our

model by using it to study microhalo-dominated annihilation signals in nearby dwarf galaxies. Such

signals are expected to arise from certain cosmological scenarios, such as an early matter-dominated

era prior to nucleosynthesis, and our model enables precise characterization of the magnitude and

morphology of these signals.
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CHAPTER 6:
EVOLUTION OF DARK MATTER MICROHALOS THROUGH STELLAR

ENCOUNTERS1

6.1 Introduction

Dark matter structure grows through hierarchical assembly; the smallest halos form first, and

larger halos grow through subsequent mergers and accretion of smaller halos. The latter are not

destroyed by this assembly process but instead broadly survive as subhalos of their new hosts, and

cosmological simulations reveal copious substructure within each dark matter halo (e.g., Refs. [447–

452]). In the cold dark matter scenario, the smallest halos may be earth mass or smaller [321, 388, 453],

and many of these microhalos are expected to persist today within galactic halos [264, 321, 325, 327].

The present-day abundance and structure of dark matter microhalos are important to astrophysical

dark matter detection efforts. Thanks to their early formation, these halos would possess the highest

characteristic density of any dark matter objects, making them important contributors to prospective

signals from dark matter annihilation [263–265, 284, 321, 345, 347, 400–407, 454, 455] (see Ref. [348]

for a review). Their high density also makes them promising targets for gravitational searches, whether

through microlensing (e.g., Refs. [349, 351, 352, 456]), timing delays (e.g., Refs. [353, 457, 458]),

or the dynamics of stars or other astrophysical systems (e.g., Refs. [200, 201, 354, 459, 460]).

Conversely, any observational constraints on the structure and abundance of these microhalos serve

as cosmological probes. The mass scale of the smallest halos directly reflects the free-streaming

scale of the dark matter particle. Meanwhile, the abundance and internal structures of microhalos

are closely linked to the statistics of the primordial density fluctuations from which they formed

[336] (see also Refs. [314, 316, 382, 383]), and these fluctuations are sensitive to the details of both

inflation (e.g., Refs. [27–31, 38, 40, 49, 51–53, 56, 69–71, 73–76, 78–81]) and the postinflationary

1This chapter was previously published in Physical Review D as Ref. [432] and is copyright c© 2019 American Physical
Society. The original reference is as follows: M. S. Delos, Evolution of dark matter microhalos through stellar
encounters, Physical Review D 100, 083529 (2019).
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cosmic history (e.g., Refs. [181–183, 191, 206, 224]).

However, microhalos are subjected to complex dynamical processes after accretion onto a host

halo, and the impact of these processes must be understood in order to accurately predict microhalo

populations. These microhalos experience gradual disruption by means of tidal forces from the host,

encounters with other substructures, and dynamical friction. Subhalo survival prospects resulting

from these processes have been widely studied (e.g., Refs. [284, 325, 328, 340–342, 395, 399, 408–417]).

Additionally, within galaxies microhalos are susceptible to encounters with individual stars. The

objective of this work is to develop a general framework, applicable to a wide variety of systems,

that can predict the evolution of a microhalo’s density profile through stellar encounters.

Previous works have explored the impact of stellar encounters on dark matter microhalos. A

common strategy (e.g., Refs. [323–325, 327, 439]) is to compare the total energy injected by a stellar

encounter to the total binding energy of the microhalo. However, as Ref. [328] has noted, this

comparison is not directly connected to the question of halo survival because such energy injections

are not distributed efficiently; the least bound particles, at large radii, receive the most energy. Prior

works have also employed semianalytic models [326] and numerical simulations [264, 322, 324, 327]

to study the impact of stellar encounters. However, the scopes of these investigations have been

limited; they typically aim to understand the microhalo’s energy injection or mass loss or focus on

the survival of microhalos near the solar neighborhood. Our work is much more general. We study

the evolution of a microhalo’s full density profile due to an arbitrary series of stellar encounters.

The smallest microhalos are expected to form with ρ ∝ r−3/2 inner density profiles [26, 226, 261–

266, 336, 454], but successive mergers tend to shallow their inner cusps toward ρ ∝ r−1 [262, 280, 336].

Accordingly, we study microhalos that initially possess the Navarro-Frenk-White (NFW) density

profile [205, 260],

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
, (6.1)

which has scale parameters rs and ρs and a ρ ∝ r−1 cusp. We use high-resolution N -body simulations

of 96 stellar encounters to explore the parameter space of encounters with these microhalos, and we

consider both first and successive encounters. For validation we also simulate randomized realistic

sequences of encounters. The framework we develop predicts the density profile of a microhalo

after arbitrarily many stellar encounters predominantly as a function of the energy injected by each
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encounter. We also find that the density profile after stellar encounters is nearly universal, which

simplifies the problem considerably.

This chapter is organized as follows. In Sec. 6.2, we detail how our simulations are carried out.

Section 6.3 develops a parametrization of stellar encounters and shows how our simulated encounters

are distributed. In Sec. 6.4, we use our simulation results to develop a model for the impact of

distant encounters, where the impact parameter is much larger than the halo, and we consider both

initial and successive encounters. Section 6.5 discusses the impact of closer encounters. In Sec. 6.6,

we explore the application of our model to microhalos passing through fields of stars. Section 6.7

concludes. Finally, Appendix E.1 explores the range of validity of the impulse approximation that

we employ throughout this work, while Appendix E.2 explores the impact of encounters occurring in

close succession.

6.2 Simulations

We follow Refs. [264, 322, 324, 327] in using N -body simulations to study a microhalo’s response

to a stellar encounter. We prepare the microhalo with an NFW density profile using the same

procedure as Ref. [395]. We draw particles from an isotropic distribution function computed using the

fitting formula in Ref. [422]. Additionally, to better resolve the microhalo’s central region, we sample

particles whose orbital pericenters are below rs/3, where rs is the microhalo’s scale radius, with 64

times the number density and 1/64 the mass of the other particles.2 We cut off the density profile at

r = 500rs; subhalo particles this far out are completely stripped by even a glancing encounter, so as

long as the cutoff radius is much larger than rs, the precise choice makes no difference. We represent

the subhalo using a total of 8× 106 particles, and roughly 70% of them, carrying roughly 4% of the

total mass, are high-resolution particles.

To simulate a stellar encounter, we follow Refs. [264, 322] in perturbing the velocities of microhalo

particles using the impulse approximation, in which these particles are treated as stationary while

the passing star exerts a tidal acceleration on each particle. Consider an encounter with impact

parameter b and relative velocity V , and center a coordinate system on the microhalo such that

2Mixing particles of different masses can induce a discreteness artifact wherein two-body interactions transfer energy
from heavy to light particles [461]. However, this effect is suppressed in our halo construction by the high particle
count and the initial radial segregation between the particle types. Reference [395] verified that there is no tendency
for the heavier particles to sink to lower radii within our halos even after hundreds of dynamical time intervals.
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the star is at position (−V t, b, 0) at time t. Since a microhalo is typically much larger than a solar

system (e.g., Sec. 6.6), the star can be accurately treated as a point mass. By integrating the tidal

acceleration it is straightforward to show that a particle at position (x, y, z) experiences velocity

injection

∆v = −2GM∗
V

1

(y − b)2 + z2

(
0,

(y − b)y + z2

b
, z

)
, (6.2)

where M∗ is the mass of the star.

Application of the impulsive velocity injections given by Eq. (6.2) is computationally faster and

more numerically stable than adding a new particle to the simulation to represent the star, owing

to the star’s immense velocity and mass compared to those of microhalo particles. Moreover, we

expect the impulse approximation to be valid in most scenarios because due to the size difference, a

microhalo’s internal velocity dispersion is typically much smaller than that of its host. A passing

star’s relative velocity is thus expected to be much greater than that of microhalo particles. However,

to clarify the conditions under which the impulse approximation is valid, we explicitly simulate a

passing star in Appendix E.1; we find that the approximation yields accurate results as long as

tdyn & 5b/V, (6.3)

where tdyn is the initial microhalo’s dynamical timescale given by [392]

tdyn ≡
√

3π/(16Gρs). (6.4)

Here, ρs is the microhalo’s scale density.

After perturbing the velocities of microhalo particles, we use the N -body simulation code

Gadget-2 to simulate the microhalo’s response. The force-softening length is set at ε = 0.003rs,

a small value that allows radii as small as 2.8ε ' 0.01rs to be resolved. When studying microhalo

density profiles, we use the procedure in Ref. [395] to set the resolution limit as the largest of the

limits set by the softening length, Poisson noise, and artificial relaxation.

Each microhalo may experience a large number of stellar encounters, so it is necessary to also

study a microhalo’s response to successive encounters. To prepare a stellar encounter after the

first, we extract the self-bound remnant of the microhalo at the end of a prior simulation using an
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star

t = 0 t = tdyn/10

t = tdyn t = 10tdyn

Figure 6.1: The projected density field of a microhalo subjected to a stellar encounter. Each
panel has width 50rs, where rs is the microhalo scale radius. The density is computed using a
k-nearest-neighbor density estimate with k = 50 and is plotted with a logarithmic color scale (lighter
is denser).

iterative procedure detailed in Ref. [395]. We compute the potential energy of each particle due to

other bound particles and use that energy to determine whether each particle is bound; this process

is iterated until the number of bound particles converges. The resulting bound remnant is then

subjected to a stellar encounter using Eq. (6.2).

Figure 6.1 illustrates a stellar encounter with an NFW microhalo simulated in this way. 96%

of the initial mass of the microhalo is freed by the encounter, but a highly dense remnant remains.

While the final system is significantly nonspherical, the dense remnant itself is highly spherical, and

Fig. 6.2 shows the evolution of the microhalo’s spherically averaged density profile. The central

profile stabilizes over the course of a single dynamical time interval tdyn, and the stable region grows

over time. The final density profile is well fit by

ρ = ρ′s
r′s
r

exp

[
− 1

α

(
r

r′s

)α]
(6.5)

with different scale parameters r′s and ρ′s and an additional parameter α = 0.78. For this profile,
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Figure 6.2: The density profile of the microhalo depicted in Fig. 6.1. Each curve indicates the
passage of a single dynamical time tdyn given by Eq. (6.4). This profile, initially an NFW profile
with parameters ρNFW

s and rNFW
s , stabilizes into the form given by Eq. (6.5) with fitting parameters

shown. All particles are plotted, not only particles bound to the halo, and beyond the stable part of
the density profile the mean radial motion is typically outward.

ρ′s and r′s are defined analogously to the parameters of the NFW profile: r′s is the radius at which

d ln ρ/d ln r = −2, and at small radii, the profile asymptotes to ρ(r) = ρ′sr
′
s/r. However, the profile in

Eq. (6.5) decays much more rapidly than the NFW profile at large radii. In this respect it is similar to

density profiles proposed to result from tidal evolution within host halos (e.g., Refs. [340, 341, 462]),

although its functional form is more closely inspired by the Einasto profile [463], which differs only

in lacking the r′s/r factor.

We simulated a variety of stellar encounter scenarios, including up to five successive encounters

with a single microhalo.3 In each case, we simulated the microhalo for the same duration of 10tNFW
dyn ,

where tNFW
dyn is the dynamical timescale of the initial NFW halo.4 We find that the density profile of

a microhalo subjected to any number of stellar encounters almost universally follows Eq. (6.5) with

the same α = 0.78. In subsequent sections, we will demonstrate the near universality of this profile

and discuss when it fails to apply.

3Successive encounters are cosmologically relevant. For instance, we find in Sec. 6.6 that microhalos in the solar
vicinity are expected to have experienced potentially thousands of stellar encounters, although the precise number
depends on the threshold impact parameter for inclusion.

4Stellar encounters raise the characteristic density of the subhalo remnant by stripping its less-dense outskirts, thereby
reducing its dynamical timescale. Hence, our simulations always last at least 10 times the dynamical timescale of the
initial microhalo, even when the initial microhalo has already experienced an encounter.
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6.3 Parametrization of encounters

Our goal is to understand the impact of a stellar encounter with massM∗, relative velocity V , and

impact parameter b on a microhalo with scale density ρs and scale radius rs. The stellar encounter

is characterized by these five parameters, but they exhibit substantial degeneracy. Equation (6.2)

implies that for a halo of characteristic size rs, velocity injections are proportional to a characteristic

velocity injection

∆v ≡ GM∗
V b2

rsf
(rs
b

)
, (6.6)

where f(x) = 1 + O(x) is a nonlinear function. Meanwhile, particle velocities within a halo of

characteristic scale rs and density ρs are proportional to a characteristic velocity v ≡ rs
√
Gρs, so

∆v

v
=

√
G

ρs

M∗
V b2

f
(rs
b

)
(6.7)

is the characteristic relative velocity injection. The dynamical impact of a stellar encounter is thus a

function of just two parameters:
√
G/ρsM∗/(V b2) and rs/b.

We are free to choose a parametrization that is any set of independent functions of these two

parameters, and we do so in the following way. In the b� rs limit, Eq. (6.2) implies that the energy

(1/2)|∆v|2 (per mass) injected into a particle at cylindrical radius rs (in the y-z plane) is

∆E =
2G2M2

∗ r
2
s

V 2b4
. (6.8)

The b−4 divergence at small b owes to the choice of reference frame: Eq. (6.2) specifies the velocity

change relative to that of the initial halo’s center. However, to understand the dynamics of the halo

remnant, the more relevant energy injection is that relative to the halo remnant’s center of mass,

whose trajectory may differ from that of the halo’s center if b . rs. Reference [464] found that the

energy injected by an impulsive encounter is well fit by a form proportional to 1/[1 + (b/rs)
4]. With

this scaling, Eq. (6.8) becomes

∆E =
2G2M2

∗ r
2
s

V 2 (b4 + r4
s)
. (6.9)

While Ref. [464] studied star clusters with King density profiles [465] instead of dark matter halos,

we will see later that this scaling works well for our simulated dark matter halos.
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Figure 6.3: The distribution of our 96 stellar encounter simulations. For first encounters, the initial
halo has an NFW profile. Higher-order encounters begin with the remnant of a previous encounter.
The dashed curve corresponds to (1 + q−1)1/2p = 1; as we discuss in Sec. 6.5, this outlines the region
wherein nonlinearities in the impulsive velocity injections become dominant, typically resulting in
disruption of the halo’s central cusp. For first encounters, q and p are defined using the results of
Sec. 6.4.2.

The characteristic binding energy (per mass) of a particle within a microhalo with scale radius

rs and scale density ρs is

Eb = −4πGρsr
2
s . (6.10)

We define one parameter as the encounter’s relative energy injection q ≡ ∆E/|Eb|, which implies

that

q =
G

2π

M2
∗

ρsV 2 (b4 + r4
s)
. (6.11)

We define our second parameter as the relative distance of the encounter,

p ≡ b/rs. (6.12)

To probe the impact of stellar encounters, we now explore the q-p parameter space. We carried

out 96 simulations using the procedure in Sec. 6.2, and the distribution of these simulations is

depicted in Fig. 6.3. The choices of encounters will be motivated in subsequent sections.

6.4 Impact of distant encounters

We begin by studying distant encounters with b� rs, and we employ the 36 simulations depicted

in Fig. 6.3 for which p = b/rs > 8. In this regime, the nonlinearities (with respect to spatial
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Figure 6.4: A demonstration of the universality of the density profile given by Eq. (6.5) with α = 0.78.
This figure shows the density profiles (solid, dashed, and dot-dashed lines) resulting from 13 of our
36 simulations with b� rs; this sample spans 5× 10−3 < q < 2. The dotted lines indicate the fits to
each profile using Eq. (6.5) with α = 0.78 enforced. Density and radius are expressed in units of the
parameters of the original NFW microhalo.

coordinates) in the velocity injections given by Eq. (6.2) are negligible, and the encounter is solely

described by the parameter q = ∆E/|Eb| given by Eq. (6.11). Additionally, the density profile that

results from stellar encounters in this regime is universal. Figure 6.4 demonstrates that Eq. (6.5)

with α = 0.78 can accurately fit the outcome of any succession of stellar encounters. Consequently,

it is not necessary to track the full succession of stellar encounters. Instead, we need only to consider

two cases:

(1) encounters with microhalos whose density profiles are given by Eq. (6.5) with α = 0.78;

(2) encounters with NFW microhalos.

The second case represents a microhalo’s first stellar encounter, but it is the more complicated of the

two scenarios because it changes the shape of the halo’s density profile. We begin by instead studying

the first case, which corresponds to successive stellar encounters. This scenario is simple because the

microhalo’s density profile after an encounter is purely rescaled from its profile beforehand.

6.4.1 Successive encounters

We consider a stellar encounter with a microhalo that already experienced an encounter; that

is, a microhalo with a density profile given by Eq. (6.5) with α = 0.78. Let rs and ρs be the scale

parameters of the microhalo prior to the encounter and r′s and ρ′s be its parameters afterward; the
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Figure 6.5: The change r′s/rs in a microhalo’s scale radius in response to an encounter with parameter
q. We plot our simulations as circles, and the relationship between r′s/rs and q is well fit (solid line)
by the equation shown.

encounter parameter q is defined by Eq. (6.11) using rs and ρs. Our objective is to find r′s and ρ′s as

functions of rs, ρs, and q.

We employ the 26 of our 36 b� rs simulations for which the initial halo is a remnant from a

previous encounter. We obtain the scale parameters of the initial and final halos by fitting Eq. (6.5),

with α = 0.78 enforced, to the stabilized part of the density profile (see Fig. 6.2). In Fig. 6.5, we

plot the radius change r′s/rs as a function of the relative energy injection q. This relationship is well

fit by the remarkably simple form

r′s
rs

=

[
1 +

(
q

q0

)ζ]−1/ζ

(6.13)

with just the two fitting parameters q0 = 0.35 and ζ = 0.63. Meanwhile, Fig. 6.6 shows that the

density change ρ′s/ρs is a power law in r′s/rs,

ρ′s
ρs

=

(
r′s
rs

)−η
(6.14)

with η = 0.72.

There is a theoretical reason to expect the behavior in Eq. (6.13) wherein r′s ∝ q−1 for q � 1. In

the q � 1 regime, all material above the halo’s scale radius rs is fully stripped, and only the halo’s

inner ρ ∝ r−1 density profile is relevant to dynamics. For this density profile circular velocities scale
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Figure 6.6: The change ρ′s/ρs in a microhalo’s scale density in response to an impulsive encounter,
as a function of the change r′s/rs in its radius. This relationship is evidently a power law (solid line).
Each circle represents a simulation.

as r1/2, so the characteristic energies of particles at radius r scale as E ∝ r. Meanwhile, the energy

injection ∆E on a particle at radius r is proportional to qr2. If the radius r′s of the halo remnant is

proportional to the radius r at which ∆E = E, then r′s ∝ q−1.

At q � 1, Eq. (6.13) has another useful interpretation. In this regime,

r′s
rs

= exp

[
−1

ζ

(
q

q0

)ζ]
, if q � 1. (6.15)

Consider two successive encounters with the same q, each producing a change r′s/rs in the target

halo’s scale radius. Since the density profile does not change significantly with each encounter, the

net change in rs is (r′s/rs)
2. Now suppose instead that the two encounters happen simultaneously.

While the geometry of the two encounters sets precisely how their velocity injections add together, on

average, we expect the energy injection ∆E to double relative to a single encounter.5 But q ∝ ∆E,

so Eq. (6.15) implies that the net change in rs is (r′s/rs)
2ζ in this scenario. Since 2ζ ' 1.55 < 2,

this calculation tells us precisely how much less efficiently a halo is altered by simultaneous stellar

encounters than by successive ones. A halo’s postencounter relaxation makes it more susceptible to

subsequent encounters. In Appendix E.2 we show that two encounters can be treated as simultaneous

5Additivity of energy injections follows from the theory of random walks. If velocity injections are in random directions,
then their squared magnitudes are additive, on average.
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if they occur within a few dynamical time intervals defined by Eq. (6.4). Section 6.6 will explore

how to quantify this behavior more precisely.

Despite the evident precision of the relationships depicted in Figs. 6.5 and 6.6, it is unclear

whence the values ζ = 0.63 and η = 0.72 in Eqs. (6.13) and (6.14) arise. The change in a microhalo’s

density profile is set by a complicated combination of the initial energy injection and subsequent

relaxation. In Appendix E.3 we explore how the distribution of particle energies is altered by a

stellar encounter, but we find no simple interpretation that describes it.

6.4.2 First encounter

Next, we explore how an NFW microhalo with parameters ρNFW
s and rNFW

s evolves through

a stellar encounter into a microhalo whose profile is given by Eq. (6.5) with α = 0.78 and scale

parameters ρ′s and r′s. We define the encounter parameter qNFW as the parameter obtained through

Eq. (6.11) using ρNFW
s and rNFW

s . From the results of the previous section, we anticipate that

r′s/r
NFW
s and ρ′s/ρNFW

s should follow similar functional forms to Eqs. (6.13) and (6.14). To make

the connection explicit, we make the ansatz that the following two scenarios yield a microhalo with

exactly the same profile parameters ρ′s and r′s:

(1) an NFW microhalo with parameters rNFW
s and ρNFW

s experiencing an encounter with mass

M∗, velocity V , and impact parameter b;

(2) a microhalo whose density profile is given by Eq. (6.5) with α = 0.78 and scale parameters

rs = ArNFW
s and ρs = BρNFW

s experiencing the same encounter, where A and B are universal.

This ansatz implies q = B−1qNFW in the b� rs regime. We additionally assume that the two halos

have the same asymptote, ρNFW
s rNFW

s = ρsrs, which implies B = A−1.

Using this ansatz, Eqs. (6.13) and (6.14) imply that

r′s
rNFW
s

= A

[
1 +

(
qNFW

Bq0

)ζ]−1/ζ

(6.16)

and
ρ′s

ρNFW
s

= BAη
(

r′s
rNFW
s

)−η
(6.17)

with B = A−1 and the same q0 = 0.35, ζ = 0.63, and η = 0.72. We now use our ten simulations

of stellar encounters with NFW microhalos to test these relationships. Figure 6.7 shows how the
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Figure 6.7: Evolution of NFW microhalos through stellar encounters. Top: The sensitivity of
the scale radius r′s of the final halo to properties of the initial halo and the encounter. Bottom:
The dependence of the change in scale density on the change in scale radius. For encounters with
qNFW & 10−2 (circles), we fit Eqs. (6.16) and (6.17) with only one free parameter, as discussed in
the text; the fits are shown as solid lines. Encounters with qNFW . 10−2 (crosses) do not obey the
same relationships, an outcome we attribute to the density profile not fully evolving from NFW to
the form given by Eq. (6.5).

final density profile depends on rNFW
s , ρNFW

s , and qNFW. We find that as long as qNFW & 10−2

the anticipated relationship is borne out, and by fitting Eqs. (6.16) and (6.17) to this regime, we

obtain A = 0.86 and B = A−1 = 1.17. For qNFW . 10−2, on the other hand, the final density

profiles deviate from these relationships. An interpretation of this outcome is that too little energy

is injected to fully convert the halo from the NFW profile to the form given by Eq. (6.5).

In conclusion, as long as a microhalo’s particles experience minimal energy injections of order

1/100 their binding energy, an NFW microhalo with scale parameters rNFW
s and ρNFW

s can be treated

as having the density profile given by Eq. (6.5) with α = 0.78 and scale parameters

rs = 0.86rNFW
s and ρs = 1.17ρNFW

s . (6.18)
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Figure 6.8: A comparison between an NFW profile and the “equivalent” profile (see the text) given
by Eq. (6.5) with α = 0.78 using the relations in Eq. (6.18). The two profiles are nearly identical
except at large radii.

In a realistic scenario in which a microhalo experiences tidal forces not only from stars but also from

other substructures and the galactic host, we expect that this condition will usually be satisfied.

Figure 6.8 shows a comparison between these two density profiles. The equivalent Eq. (6.5) density

profile drops off more quickly than the NFW profile at large radii, but the two profiles are otherwise

nearly identical.

6.5 Penetrative encounters

We now turn to penetrative encounters with b . rs. In this regime, two new effects become

important.

(1) Nonlinear terms in the velocity injections given by Eq. (6.2) become significant.

(2) Equation (6.2) no longer accurately describes the velocity injection relative to the halo remnant’s

center of mass because it describes the velocity injection relative to that on the halo’s initial

center, whose motion may differ.6

We anticipate that our definition of the parameter q in Sec. 6.3 will account for the second effect.

However, it is not clear how to account for the first.

We simulated 60 encounters with p = b/rs < 8, as shown in Fig. 6.3. After each encounter, we

6Equation (6.2) is still suitable for initializing simulations, with the caveat that it can induce a bulk velocity on the
halo remnant.
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Figure 6.9: A test of the predictions from Eqs. (6.13) and (6.14) for encounters with b . rs. These
predictions work well for a broad range of parameters, but they fail when ν = p−1(1 + q−1)−1/2 & 0.1
(color scale). The relative contributions of nonlinear terms in the velocity injections are of order ν,
so we find that our predictions are accurate as long as these nonlinear terms can be neglected.

fit Eq. (6.5) to the microhalo’s density profile to obtain its scale parameters rs and ρs. Additionally,

we find that it is now necessary to allow the parameter α to vary. Figure 6.9 compares the scale

parameters obtained in these simulations to those predicted from Eqs. (6.13) and (6.14). Evidently,

the model developed for the b� rs regime accurately describes evolution by stellar encounters for a

large portion of the b . rs regime, including cases where b� rs. However, there are some encounters

for which it predicts wildly inaccurate results.

To understand where our predictions fail, we investigate when nonlinear terms in the velocity

injections become important. For a halo with characteristic internal velocities v, Eq. (6.7) implies

that the characteristic velocity injection is ∆v ∝ q1/2[1 +O(p−1)]v, which we can separate into linear

part ∆vlin ∝ q1/2v and nonlinear part ∆vnl ∝ q1/2p−1v. If the nonlinear terms can be neglected,

then the characteristic final velocity is v′lin =
√
v2 + ∆v2

lin (where we assume the direction of the

particle’s velocity injection is random relative to its velocity). Hence, the relative contribution of

nonlinear terms is of order

∆vnl/v
′
lin ∼ ν ≡ p−1(1 + q−1)−1/2. (6.19)

We indicate the value of ν in Fig. 6.9 with a color scale, and Fig. 6.10 shows the impacts of the
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Figure 6.10: The impact of nonlinear terms in the velocity injections, which have relative magnitude
of order ν. Top: The parameter α of the best-fitting density profile given by Eq. (6.5). Middle and
bottom: Deviations from the predicted values of rs and ρs using Eqs. (6.13) and (6.14). When
ν & 0.1, deviations start to appear in all three parameters. Additionally, when ν & 1, the central
ρ ∝ r−1 cusp can be disrupted (red lines; see Fig. 6.11). There is no fit for these cases.

relative nonlinearity ν more directly. If ν � 1, then nonlinear effects are unimportant, and surely

enough, we find that deviations from the predictions of Eqs. (6.13) and (6.14) are minimal when

ν . 0.1. On the other hand, when ν & 0.1, these deviations can become large. Additionally, the

density profile is no longer universal when ν . 0.1; the best-fitting value of α can deviate significantly

from α = 0.78. When ν & 1, the halo’s central ρ ∝ r−1 density cusp can even be disrupted so

that the logarithmic slope γ of its ρ ∝ r−γ inner profile becomes smaller than 1. In some cases, a

uniform-density core (γ = 0) results. These disruption scenarios are indicated in Fig. 6.10 in red,

and Fig. 6.11 shows the resulting density profiles.

The precise sensitivity of the density profile to q and p after an encounter with ν & 0.1 is

complicated. However, as an approximate treatment, the predictions of Eqs. (6.13) and (6.14) are

reasonably accurate for ν . 1/3, and when ν & 1/3, the resulting halo is close to disruption. We

will see in the next section that the ν & 0.1 regime is relatively unimportant to typical microhalo

scenarios.
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6.6 Stellar fields

We now explore the implications of the model given by Eqs. (6.13) and (6.14) for microhalos

passing through fields of stars. As a representative example, we study microhalos traversing the solar

neighborhood. We take the microhalos to have NFW scale parameters ρNFW
s = 1.7× 109 M�/kpc3

and rNFW
s = 5× 10−6 kpc. These parameters correspond to halos with mass mvir = 10−6 M� and

concentration rvir/rs = 2 at redshift z = 32, which are typical parameters for the smallest halos in

a cold dark matter scenario (e.g., Ref. [454]). Meanwhile, the stellar mass density of the Galactic

disk at the sun’s altitude is roughly ρ∗ = 4× 107 M�/kpc3 [392]. We assume the microhalos have

velocity Vhalo = 200 km/s relative to the disk while the stars have mass M∗ = 0.5M� and velocity

dispersion σ∗ = 50 km/s within the disk. We consider a total duration of t = 160 Myr, which is

roughly the amount of time microhalos whose orbits cross the solar vicinity are expected to spend

inside the disk over the Galactic age [327].7

We sample stellar encounter positions uniformly within the cylinder of radius bmax = 80rs and

length Vhalot. For our scenario this choice of bmax implies that only encounters with relative energy

7For clarity, we note that the vast majority of microhalos within the Galactic halo are not expected to encounter a
star due to the small relative volume occupied by the disk. In this section we specifically treat microhalos that cross
the solar vicinity.
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injection q . 10−7 are excluded. A total of 1305 encounters are expected within this volume, and we

sample the encounter count from the corresponding Poisson distribution. Each encounter velocity

V is the vector sum of Vhalo and a stellar velocity V∗ randomly sampled using the stellar velocity

dispersion.

The model developed in the previous sections may now be applied to this scenario, but there

is a complication. The dynamical timescale of the initial halo is about 8 Myr, so a large number

of stellar encounters are expected to occur within each dynamical time interval. Meanwhile, as we

found in Appendix E.2, encounters should be treated as simultaneous if they occur within a few

dynamical time intervals tdyn defined by Eq. (6.4). To accommodate this requirement we adopt the

following procedure. For an encounter i occurring at time ti, we consider all n encounters (including

the encounter i) within the previous time interval ti −∆t < t < ti, where

∆t = λtdyn (6.20)

for some number λ. Using these n encounters we compute two effective encounter parameters:

q+
eff =

i∑

j=i−n+1

qj and q−eff = q+
eff − qi. (6.21)

q+
eff is the combined relative energy injection from all encounters within the last time interval ∆t

including the ith encounter, while q−eff excludes the ith encounter. Rather than apply the scaling

prescribed by Eq. (6.13) using the ith encounter’s parameter qi, we apply this scaling using q+
eff and

the reciprocal scaling using q−eff . In other words, we take the ith encounter to change the microhalo’s

scale radius rs by the factor

r′s
rs

=

[
1 + (q+

eff/q0)ζ

1 + (q−eff/q0)ζ

]−1/ζ

. (6.22)

This procedure treats encounters occurring within the time interval λtdyn as simultaneous in a

self-consistent way.8 We use Eq. (6.18) to initially rescale the microhalo parameters, and for two

8It is easy to see that this procedure yields the desired results in two limiting cases. If a cluster of encounters occurs
within λtdyn, then each encounter cancels the effect of the previous one, and the final encounter applies the scaling
given by Eq. (6.13) using the summed energy injection. If an encounter is separated from all others by intervals longer
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Figure 6.12: Comparing model predictions to simulations for a microhalo traversing a field of stars.
We plot the evolution of the density profile asymptote ρsrs for a microhalo crossing two random
stellar distributions (upper and lower panels) representative of the solar neighborhood. Predictions
using Eqs. (6.22) and (6.14) are shown as solid, dashed, dot-dashed, and dotted lines for various
values of the parameter λ (see the text). For comparison, the black circles represent simulation results,
where the asymptote is determined by fitting Eq. (6.5) with α = 0.78. These points are averaged
over ten simulations, each with different randomized encounter orientations, and the simulations
continue after the last encounters (hatched region) to allow the halo to relax. The predictions for
λ = 2 match the simulations reasonably well outside of relaxation periods occurring after major
encounters. We express the asymptote in units of the initial asymptote (ρsrs)init.

random stellar encounter distributions, Fig. 6.12 shows the predicted microhalo evolution using this

procedure for several values of λ.

To test this procedure and tune the parameter λ, we instructed the Gadget-2 simulation code

to apply velocity injections given by Eq. (6.2) according to a preset list of stellar encounters. These

velocity injections are computed taking the point of least potential as the origin, and each encounter’s

spatial orientation is randomized. With this arrangement, we carried out numerical simulations of

the two stellar field scenarios depicted in Fig. 6.12. In order to facilitate direct comparison, we began

the simulations with a microhalo that was a remnant from a previous stellar encounter; this remnant

than λtdyn, then q−eff = 0, and the scaling given by Eq. (6.13) is applied using that encounter’s energy injection alone.
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Figure 6.13: Equivalence of the density profile given by Eq. (6.5) with α = 0.78 to the NFW density
profile, for the purpose of stellar encounters, if the two profiles are related by Eq. (6.18). We
subjected microhalos with these two density profiles to the same stellar field scenario (corresponding
to the upper panel of Fig. 6.12), and the density profiles that result are identical except at large radii.
The profiles plotted here include only particles bound to the halo as computed using the procedure
in Sec. 6.2.

was rescaled to have the correct scale parameters predicted by Eq. (6.18). We simulated ten instances

of each scenario with different encounter orientations, and Fig. 6.12 shows the orientation-averaged

evolution of the microhalo’s inner density asymptote ρsrs in these simulations as computed by fitting

Eq. (6.5) with α = 0.78 to the density profile.9 Outside of relaxation periods after major encounters,

Fig. 6.12 shows that our predictions with λ = 2 match the simulation results well.

We also subjected a microhalo with an NFW profile to one of the same series of stellar encounters,

and we compare this halo’s evolution to that of the stellar encounter remnant with the profile given

by Eq. (6.5) with α = 0.78. Figure 6.13 shows the evolution of the two density profiles. Except at

large radii, the resulting halos develop identical density profiles, which further confirms the accuracy

of the scaling given by Eq. (6.18).

Finally, to illustrate the power of our predictive framework, we sample 10 000 random sequences of

stellar encounters for microhalos traversing the solar neighborhood. Figure 6.14 shows the predicted

9Specifically, we use the density profile of the instantaneous bound remnant computed using the procedure in Sec. 6.2,
and we only fit out to the radius at which ρr = ρsrs/3. We picked the asymptote ρsrs because it is the quantity
least sensitive to details of the fit.
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Figure 6.14: Mass evolution for microhalos crossing the solar neighborhood as predicted using Eqs.
(6.22) and (6.14). The random distribution of stars induces variance in the mass evolution; we plot
eight example mass trajectories along with the mean and median of 10 000 trajectories (black curves).
The cyan curves represent the trajectories if the halo is allowed to fully relax every 2 Myr, which
corresponds to a typical disk-crossing time interval. We express the mass in units of minit, which we
take to be the mass of the halo after the initial rescaling given by Eq. (6.18).

trajectory of the mass

m = 4πα2/α−1Γ(2/α)ρsr
3
s ' 11.9ρsr

3
s (6.23)

(for α = 0.78; Γ is the gamma function) of microhalos subjected to different sequences. We plot

the median and mean mass trajectories along with eight examples. There is substantial variation

between halos, but in general, the microhalos lose almost all of their original mass by t = 160 Myr.

These results are similar to those of Ref. [327], which simulated a similar scenario. We note, however,

that in the true solar-neighborhood scenario halos should be allowed to fully relax between disk

crossings. In Fig. 6.14, we also plot the mean and median mass trajectories if the halo is allowed to

fully relax every 2 Myr; that is, the summation in Eq. (6.22) is made to exclude any encounters prior

to the 2 Myr interval. The trajectories change significantly in this scenario, implying it is important

to properly account for the halo’s relaxation.

Our predictions assume that encounters are

(1) in the impulsive regime with tdyn & 5b/V ; and

(2) in the linear regime with ν = p−1(1 + q−1)−1/2 . 0.1.

In the solar neighborhood scenario, all encounters are impulsive with tdyn ∼ 103b/V , as expected
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from the discussion in Sec. 6.2. Roughly half of the microhalo instances experience encounters with

ν > 0.1, but their impact turns out to be minimal. We tested an alternative procedure where any

encounter with ν > 0.1 was assumed to destroy the halo, and the mean and median trajectories

in Fig. 6.14 did not move appreciably. Evidently, the halos that underwent these encounters were

already effectively destroyed by them. Thus, neither requirement significantly hinders the model’s

applicability to this scenario.

6.7 Conclusion

In this chapter, we developed a framework that can predict the evolution of microhalo density

profiles as a result of successive stellar encounters. We found that the density profiles of microhalos

subjected to stellar encounters follow an almost universal form given by

ρ = ρs
rs
r

exp

[
− 1

α

(
r

rs

)α]
(6.24)

with α = 0.78, and Eq. (6.18) describes how this form is related to the initial NFW profile. If each

stellar encounter is parametrized by the energy it injects using Eq. (6.11), then Eqs. (6.13) and (6.14)

describe the microhalo’s response to that energy injection. Successive encounters occurring within

roughly λ = 2 dynamical time intervals should be treated as simultaneous and their energy injections

added; Sec. 6.6 discusses how to implement this effect. This framework is accurate assuming that

encounters are impulsive [see Eq. (6.3)] and the resulting velocity injections are in the linear regime

defined by Eq. (6.19). However, these conditions do not significantly hinder its applicability, as we

discuss in Sec. 6.6.

Through Monte Carlo methods, this model can rapidly characterize the impact of stellar en-

counters on whole ensembles of microhalos. For instance, we were able to generate in minutes

10 000 randomized realizations of a stellar field scenario similar to the single realization simulated in

Ref. [327]. In Ref. [437] (forthcoming), we use this model to aid in characterizing the microhalo-

dominated dark matter annihilation signals that are expected to arise from certain early-Universe

scenarios. In the process, we develop a method to combine the impact of stellar encounters with the

subhalo tidal evolution modeled by Ref. [395].

This framework is limited to microhalos initially possessing NFW density profiles. While merger

events drive halos’ inner density profiles toward the ρ ∝ r−1 of the NFW profile [262, 280, 336], it is
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possible that the smallest halos might retain steeper density cusps today. An exploration of different

density profiles is beyond this work’s scope, but we anticipate that because of its simplicity, our

model will extend readily, albeit with a possibly different universal density profile. Additionally,

this model describes microhalos subjected to stellar encounters alone. Further work is needed to

precisely understand the combined impact of stellar encounters, galactic tides, and other disruptive

processes; Ref. [437] represents a start. Nevertheless, the model presented here will enable more

accurate characterizations of the microhalo population within galactic halos.
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CHAPTER 7:
BREAKING A DARK DEGENERACY: THE GAMMA-RAY SIGNATURE OF

EARLY MATTER DOMINATION1

7.1 Introduction

The thermal history of the Universe prior to Big Bang nucleosynthesis (BBN) is largely unprobed.

Light-element abundances [6–9], along with density variations inferred from the cosmic microwave

background and galaxy surveys [10, 11], demand only that the maximum temperature of the last

radiation-dominated epoch be at least 3 MeV. Our sole hint at earlier history is that to solve the

horizon and flatness problems and explain the nearly scale-invariant spectrum of primordial density

variations, the Universe is believed to have undergone a period of inflation prior to BBN [1–3].

However, the energy scale associated with inflation could be as high as 1016 GeV [136, 137], and we

have no constraints on the Universe’s evolution between inflation and BBN.

There is little reason to assume the Universe was radiation dominated from the end of inflation

until BBN (see Ref. [145] for a review of proposed dynamics). Since the energy density of relativistic

particles decreases more rapidly than that of nonrelativistic particles, any heavy field left over from

the inflationary epoch would naturally come to dominate the energy density of the Universe, leading

to an early matter-dominated era (EMDE); such a field is only required to decay into radiation

before the onset of BBN. Well motivated examples of such heavy fields include hidden-sector particles

[146–158], moduli fields in string theory [159–166], and certain spectator fields invoked to generate

primordial curvature variations during inflation [167–170]. After inflation ends, the inflaton itself

can also behave as a pressureless fluid before its decay [171–180].

This gap in our understanding of the early Universe gravely impairs our capacity to constrain the

properties of thermal-relic dark matter candidates. If the dark matter froze out from the thermal

1This chapter was previously published in Physical Review D as Ref. [437] and is copyright c© 2019 American Physical
Society. The original reference is as follows: M. S. Delos, T. Linden, and A. L. Erickcek, Breaking a dark degeneracy:
The gamma-ray signature of early matter domination, Physical Review D 100, 123546 (2019).
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plasma during the last radiation-dominated epoch, its annihilation cross section must be close to the

canonical 〈σv〉 = 3× 10−26 cm3s−1 in order to produce the observed relic abundance, a value that

astrophysical indirect-detection searches have begun to test [209–212]. However, if dark matter froze

out during or before an EMDE, its relic density would have been diluted by entropy produced by

the decay of the species driving the EMDE. In this scenario, a smaller cross section is required to

effect the observed relic abundance, potentially making a broad new range of dark matter candidates

viable [213–223].

Fortunately, an EMDE also amplifies the range of dark matter cross sections accessible to indirect-

detection searches. Subhorizon density perturbations grow rapidly when pressureless fluids dominate

the Universe. Consequently, an EMDE can dramatically enhance small-scale density variations,

resulting in the formation of a plethora of highly dense sub-Earth-mass dark matter microhalos

long before dark matter halos would otherwise be expected to form [181–183, 206, 224, 225]. These

microhalos in turn boost the rate of dark matter annihilation for a given cross section. The purpose

of this work is to develop a procedure through which existing indirect-detection experiments can

be applied to constrain thermal-relic dark matter candidates that freeze out during or before an

EMDE. We improve on previous efforts [206, 224, 225] by employing newly developed models of

microhalo formation and evolution to characterize both the magnitude and the morphology of the

microhalo-dominated annihilation signals that result from an EMDE.

The signal from annihilation within unresolved microhalos is morphologically similar to that

of decaying dark matter; it follows the microhalo distribution, which is similar to the dark matter

mass distribution. However, microhalos in dense environments suffer gradual disruption due to

tidal effects and encounters with other objects, so their annihilation signal is suppressed within

these environments. These effects are particularly important near the centers of host halos, and we

account for them in our analysis by employing several recently developed models to characterize the

microhalo population. We use the results of Chapter 4 to model the microhalos that result from

EMDE scenarios. This work predicts the population of halos and their density profiles given the

(linear-theory) power spectrum of density variations. Additionally, we use the results of Chapters 5

and 6 to predict how these microhalos evolve within host halos. Chapter 5 traces the dynamical

evolution of subhalos due to tidal forces, while Chapter 6 treats the evolution of microhalos due to

encounters with stars.
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As a demonstration, we use Fermi-LAT data [268] to derive new constraints on thermal-relic

dark matter candidates. We first consider the isotropic gamma-ray background (IGRB), translating

published limits on the dark matter lifetime derived therefrom [466, 467] into bounds on dark matter

annihilation within unresolved microhalos. These constraints depend strongly on dark matter’s

free-streaming scale and its relation to horizon scales during the EMDE, but for reasonable sets of

parameters, we obtain bounds as small as 〈σv〉 . 10−32 cm3s−1 on dark matter’s annihilation cross

section. We also consider gamma rays from the Draco dwarf spheroidal galaxy (dSph), employing

Fermi-LAT data to derive limits on annihilation within microhalos inside Draco. These limits take

into account the unique signal morphology induced by disruptive tidal effects within galactic systems.

While Draco yields weaker limits than the IGRB on 〈σv〉, its signal morphology could potentially

discriminate between microhalo-dominated emission and dark matter decay.

This chapter is organized as follows. Section 7.2 reviews the impact of an EMDE on the dark

matter abundance and density variations. In Sec. 7.3, we detail how the model in Chapter 4 is

employed to predict the microhalo populations resulting from EMDE scenarios. Section 7.4 uses the

IGRB to derive limits on dark matter cross sections, while Sec. 7.5 uses gamma rays from the Draco

dwarf; in both cases, the suppression of microhalo annihilation rates due to tidal effects is considered

in detail. Section 7.6 presents our conclusions. We include further technical details in Appendix F.

Appendix F.1 discusses the growth rate of small-scale dark matter density fluctuations and how we

account for this growth rate within Chapter 4’s halo-formation model. Appendix F.2 details how

tidal suppression factors derived from Chapter 5’s tidal evolution model are aggregated over a host

halo and presents a fitting function for future convenience. Appendix F.3 reanalyzes the simulations

in Chapter 5 to present a new refinement to the tidal evolution model, while Appendix F.4 uses a

new array of N -body simulations to determine how to combine the effects of galactic tidal forces and

stellar encounters. Finally, Appendix F.5 discusses how we estimate Draco’s outer density profile.

7.2 Early matter domination

In this section, we review the implications of an EMDE for dark matter; further detail can be

found in Refs. [181–183, 206, 213–225]. We denote by φ the heavy field that drives early matter

domination. The end of an EMDE is characterized by the reheat temperature TRH > 3 MeV at which

φ domination gives way to radiation. If the EMDE was preceded by another radiation-dominated

epoch, then the transition to φ domination occurs at an even higher temperature Tdom.
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Figure 7.1: Influence of an EMDE on the mass mχ and annihilation cross section 〈σv〉 required for
thermal-relic dark matter to achieve the observed relic abundance. We show an array of EMDE
scenarios with reheat temperature TRH = 10 MeV; one begins at temperature Tdom � TRH (or has
no preceding radiation-dominated epoch; thick black curve), while the others (colored curves) have
Tdom/TRH indicated by the numbers on the right. If a colored curve is disconnected from the black
curve, then the entire black curve is also viable for that Tdom/TRH. “Freeze-out” (solid and dashed
lines) indicates that dark matter dropped out of equilibrium with the thermal bath, while “freeze-in”
(dotted lines) corresponds to dark matter never reaching equilibrium; in either case, production
and/or annihilation ceases at a temperature Tf closely related to mχ. Entropy production during
the EMDE dilutes the dark matter so rapidly that if there is no radiation from a prior epoch, the
dark matter mass cannot exceed O(102)TRH to have any hope of reaching the observed abundance.
On the other hand, the presence of leftover radiation from a prior epoch allows much larger mχ

to still achieve the observed abundance (colored solid curves). Arbitrarily large mχ can reach the
observed abundance by freezing out before the EMDE (dashed curves). Disjointed behavior occurs
when the dark matter freezes out close to the QCD phase transition at temperature 170 MeV. The
shaded region marks where the dark matter’s coupling constant exceeds unity [468].

7.2.1 Relic density of dark matter

The relic density of a dark matter species χ with mass mχ and annihilation cross section 〈σv〉

is set by TRH and Tdom, and we determine this density by numerically integrating the Boltzmann

equations in Ref. [224]. Figure 7.1 illustrates the ways dark matter in an EMDE cosmology can

achieve the observed relic density ρχ/ρcrit = 0.26 today, where ρcrit is the critical density. In an

EMDE scenario with no prior radiation (thick black curve), the annihilation cross section 〈σv〉

required to achieve the observed relic abundance depends strongly on mχ. Dark matter freezes out

from thermal equilibrium at a temperature Tf that is approximately proportional to mχ, so higher

mχ means the dark matter freezes out earlier and consequently suffers more dilution by φ decay. To

compensate, 〈σv〉 must be smaller so that the dark matter freezes out at higher density. However,

〈σv〉 can only become so small before the dark matter never achieves equilibrium in the first place.
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Beyond this point, the dark matter is said to freeze in; further reducing 〈σv〉 now reduces the relic

density, requiring smaller mχ (later freeze-in) to achieve the observed abundance. For TRH = 10 MeV,

dark matter with mχ > 100TRH suffers too much dilution to reach the observed abundance.

The presence of a prior radiation-dominated epoch changes the story considerably (colored

curves in Fig. 7.1). While the φ decay sources radiation, this production remains subdominant

to expansion-induced cooling until late in the EMDE at temperature T ' T
4/5
RH T

1/5
dom.2 Significant

entropy production does not begin until that point. Consequently, for Tf > TRH, there are three

qualitatively different regimes for dark matter freeze-out. If Tf . T
4/5
RH T

1/5
dom, then the conditions

required for dark matter to achieve the observed abundance are unaffected by the presence of prior

radiation. If instead T 4/5
RH T

1/5
dom . Tf . Tdom, then the dark matter experiences less dilution than if

there were no prior radiation, so it can achieve the observed relic abundance for much larger mχ than

would be possible otherwise. In this regime, the dark matter is diluted by the same factor regardless

of its mass, but larger masses mχ still require smaller 〈σv〉 to reach the observed abundance because

of the influence of the dominant φ on the expansion rate.3 Finally, if Tf & Tdom, then there is no

φ-induced boost to the expansion rate and all dark matter masses suffer the same dilution, so the

required 〈σv〉 is independent of mχ.

Evidently, by tuning Tdom, any dark matter candidate that lies to the right of the Tdom � TRH

(black) curve in Fig. 7.1 can be brought to the observed relic abundance if TRH = 10 MeV. The

story is similar with other reheat temperatures, and we show examples in Fig. 7.2. These figures

clearly illustrate the breadth of the degeneracy between dark matter properties and the early thermal

history. The TRH > 3 MeV constraint limits mχ & 100 MeV, but otherwise, almost any thermal relic

with 〈σv〉 . 3× 10−26 cm3s−1 is viable.

7.2.2 Growth of density perturbations

When φ dominates, subhorizon dark matter density contrasts grow as δ ≡ δρχ/ρ̄χ ∝ a, where a

is the scale factor, which is significantly faster than the δ ∼ log a behavior expected when radiation

2Intuitively, newly sourced radiation may be viewed as remaining subdominant to prior radiation until late in the
EMDE, although physically the two cannot be distinguished.

3φ domination boosts the expansion rate relative to the rate if only radiation were present, and this boost grows in
time as φ becomes more dominant. Faster expansion means 〈σv〉 must also be higher to achieve the observed relic
abundance. Heavier particles freeze out earlier, so they enjoy less of this boost to the expansion rate and require
smaller 〈σv〉.
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Figure 7.2: Similar to Fig. 7.1, but showing EMDE scenarios with different reheat temperatures TRH

and Tdom � TRH (or no prior radiation). For a given TRH, any dark matter candidate that lies to
the right of the corresponding curve can be brought to the observed relic abundance by tuning Tdom.

dominates. Intuitively, the φ particles gravitationally cluster and carry the dark matter with them.

Reference [181] determined how the EMDE-boosted growth alters the power spectrum P(k) of dark

matter density variations at later times. P(k) is influenced by two main parameters: the reheat

temperature TRH and the dark matter free-streaming scale, which sets a cutoff wave number kcut.

The former is set by properties of the φ field, while the latter is determined by the microphysics of the

dark matter, namely its interactions with relativistic particles and its residual velocity distribution

[388, 469–472]. The kinetic decoupling of dark matter during an EMDE is complicated by the

entropy injected by φ decay [473], but an EMDE generally leaves dark matter much colder than it

would be in the EMDE’s absence [474].

Figure 7.3 shows P(k) for several EMDE scenarios calculated using transfer functions from

Ref. [181] as described in Ref. [224]. Fluctuations that were subhorizon during the EMDE are

enhanced, so the reheat temperature TRH that marks the end of the EMDE sets the scales at which

this enhancement occurs. The smallest scales not suppressed by free streaming are enhanced the most;

these are the modes near the wave number kcut associated with the dark matter’s free-streaming

cutoff.4 The ratio kcut/kRH between this cutoff and the wave number entering the horizon at

reheating is significant because it sets the maximum enhancement to P(k).

These power spectra were derived assuming no prior radiation. To ensure their validity in

scenarios with finite Tdom, we require that modes entering the horizon prior to the EMDE, at

4As in Ref. [224], we define kcut such that the matter power spectrum is scaled by exp(−k2/k2
cut).
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Figure 7.3: The (dimensionless) power spectrum of dark matter density fluctuations at redshift
z = 300 in several EMDE cosmologies, as computed in linear theory using transfer functions from
Ref. [181]. Fluctuations are enhanced on the comoving scales k that were inside the horizon during
the EMDE, creating a “bump” in the power spectrum at small scales. To supply intuition, we
also plot the mass scale M = (4π/3)ρ̄k−3 associated with each wave number k, where ρ̄ is the
cosmological mean dark matter density; M is of order the mass of the halo forming from a density
variation of scale k. In all scenarios fluctuations are already nonlinear (horizontal line) by z = 300,
implying microhalos have begun to form.

temperature T & Tdom, lie below dark matter’s free-streaming scale. To be precise, we demand that

the wave number kdom entering the horizon at Tdom satisfy kdom & 3kcut, which ensures that the

previous radiation epoch’s imprint does not reduce the rms density variation in the dark matter by

more than about 20%.5 This requirement is equivalent to

Tdom/TRH & 5(kcut/kRH)3/2. (7.1)

Additionally, these power spectra assume that the dark matter froze out early enough before reheating

that dark matter density perturbations were able to catch up to those in φ. Figure 4 of Ref. [224]

suggests that it takes roughly a factor of 5 in a, corresponding to a factor of 2 in T , for a dark

5We use the zero-baryon transfer function from Ref. [475] to approximate the power spectrum imprinted by an EMDE
preceded by a radiation-dominated period, and we test how its rms density variation compares to that associated
with a matter-only power spectrum if both have the same kcut. A 20% decrease in the amplitude of a density contrast
roughly corresponds to a factor of 2 drop in the corresponding collapsed halo’s annihilation rate.
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matter density perturbation to settle into δ ∝ a after freeze-out. Thus, we demand

Tf & 2TRH. (7.2)

7.3 Microhalos and their properties

The density contrasts enhanced by an EMDE can collapse into dark matter microhalos long before

the first halos would otherwise be expected to form, and their early formation makes these halos

extremely small and dense. In this work, we study scenarios with 20 ≤ kcut/kRH ≤ 40, for which

most microhalos form at redshift 200 . z . 3000. Larger kcut/kRH are theoretically plausible [225],

especially for hidden-sector dark matter [206]. However, they enhance fluctuations enough to induce

collapse prior to matter domination, the study of which is beyond this work’s scope.6 Additionally,

we focus on EMDE scenarios with TRH = 10 MeV and TRH = 2 GeV: the former because it is close to

the coldest reheat temperature possible without altering BBN, and the latter because it would bring

certain supersymmetric dark matter candidates to the observed relic abundance (without assuming

prior radiation) [225].

The first microhalos form through the direct collapse of peaks in the density field, so they are

expected to possess density profiles that scale as ρ ∝ r−3/2 at small radii [26, 226, 261–266, 336, 454].

However, successive mergers drive their inner density cusps toward the shallower ρ ∝ r−1 scaling

[262, 267, 280, 336, 454]. Thus, we will assume that microhalos eventually develop density profiles

of the Navarro-Frenk-White (NFW) form,

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
(7.3)

which is a generic outcome of hierarchical halo clustering [205, 260].

6Sufficiently overdense regions can collapse when radiation dominates due to particle drift alone. If these collapsed
regions are locally matter dominated, they form bound halos long before matter-radiation equality; such early
formation makes these halos much denser than any halo that forms during matter domination [206]. Regions that
are even more overdense can collapse to form halos during an EMDE; these φ-dominated halos gravitationally heat
the dark matter so that after the φ decay destroys them, subsequent structure formation is suppressed [206].
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7.3.1 Modeling the microhalo population

We use the framework developed in Chapter 4 to characterize the microhalos that form after an

EMDE. This framework maps each peak in the (unfiltered) primordial density field to a collapsed

halo, predicting the coefficient A of that halo’s inner ρ = Ar−3/2 density asymptote, the radius rmax

of maximum circular velocity, and the mass mmax that radius encloses. We note that the model

predicts a complete mass profile M(r) for each halo, but this profile is only calibrated to agree with

simulations at r = rmax. By sampling peaks from the density field as described in Appendix C of

Chapter 4, we can thereby sample halos. For simplicity, we use the turnaround model in Chapter 4

to predict rmax and mmax, but as that work notes, alternate models yield very similar predictions.

We consider a variety of EMDE scenarios, and for each scenario we begin with the power spectrum

of density fluctuations. We first use the Boltzmann solver CAMB Sources [270, 271] to compute

the power spectrum at redshift z = 500 using Planck cosmological parameters [476]. Subsequently,

we apply the appropriate transfer function from Ref. [224] to convert this power spectrum into one

describing an EMDE scenario. We then use this power spectrum to draw a halo population using

the methods of Chapter 4, but there is a complication. Dark matter density contrasts δ at scales

k & 102 Mpc−1 grow at the suppressed rate δ ∝ a0.901 [273], where a is the scale factor, because

baryonic matter does not accrete into such small structures [471]. We describe in Appendix F.1 how

we adapt the Chapter 4 framework to this growth function.

Using the power spectrum, it is straightforward to apply the methods of Chapter 4 to predict the

distribution of the asymptotic coefficient A. However, the application to rmax and mmax demands

some care since it requires sampling the profiles δ(q) of the precursor density peaks at a finite

number of comoving radii q. We sample the peaks at 300 radii distributed evenly in log space

from q = 0.03k−1
cut to q = 3k−1

RH; the minimum radius is well below the free-streaming cutoff, while

the maximum radius is large enough to ensure that all EMDE-enhanced scales are sampled. The

advantage to using the turnaround model is that predictions are insensitive to the choice of maximum

radius as long as the initial radius of the mass shell that collapses to rmax is sampled.

We additionally cut off the density profile of each peak when the average enclosed overdensity is

either zero or begins to grow. The former scenario implies that no farther mass shells are expected

to accrete, while the latter suggests the presence of a denser neighboring structure; such a structure

would cause the spherical collapse model that underlies the rmax and mmax predictions to break
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down. The cutoff in the peak density profile imposes a cutoff in the predicted mass profile at the

collapsed radius of the outermost mass shell, and if the circular-velocity maximum lies at that cutoff

(implying it is not a local maximum), then we discard this halo; it is likely too rapidly accreted by a

neighboring structure to be relevant.7 Additionally, we discard peaks for which there is no ellipsoidal

collapse solution using the approximation in Ref. [373].8

We consider a variety of EMDE scenarios, and we use the above methods to sample 106 peaks in

each scenario and convert them into predicted halos. As illustration, Fig. 7.4 shows six example

mass profiles M(r) predicted for a cosmology with TRH = 2 GeV and kcut/kRH = 20. We separately

show the inner asymptote, set by the prediction of A, and the broader mass profile. The latter is

only tuned to be accurate at rmax, which is where M(r)/r peaks, and as Chapter 4 notes, it does

not produce valid predictions at small r because it is derived under the assumption that mass shells

accrete adiabatically.

7.3.2 Annihilation within microhalos

The dark matter annihilation rate within a microhalo is proportional to its J factor,9

J ≡
∫
ρ2dV, (7.4)

and is largely set by the inner asymptote A of its density profile. If halos retain ρ ∝ r−3/2 inner

density profiles, then the annihilation rate is proportional to A2 if we neglect a logarithmic dependence

on minimum radius10 and maximum radius. However, mergers between microhalos are expected to

drive these cusps toward the ρ ∝ r−1 scaling of the NFW profile [262, 267, 280, 336, 454]. Mergers

also deplete the microhalo count while making the survivors more dense. To predict the annihilation

7We reanalyzed the EMDE scenario in Chapter 4 to test the impact of discarding peaks for which rmax lies beyond
this cutoff in the mass profile. Only 5% of the peaks that matched to simulated halos satisfy the removal criterion,
and of those halos, 87% underwent a major merger during the simulation duration.

8Only highly aspherical peaks lack a collapse solution. Increased deviation from spherical symmetry causes later
collapse, so the absence of a solution may imply these peaks never collapse. Spherical asymmetry is also anticorrelated
with the amplitude of a density peak [269], so the collapse of highly aspherical peaks is delayed by both their small
amplitude and their asphericity, implying that even if they do collapse they likely do so late enough that their
contribution to observables is negligible.

9We assume the dark matter annihilation cross section 〈σv〉 is velocity independent in the nonrelativistic limit.
10The annihilation rate from a ρ ∝ r−3/2 cusp diverges, which implies that the profile would shallow at some minimum
radius due to these annihilations.
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Figure 7.4: Mass profiles of six halos sampled using the methods of Chapter 4 in an EMDE scenario
with TRH = 2 GeV and kcut/kRH = 20. We separately show the inner asymptotes (dashed lines) and
the greater mass profiles (solid lines). The greater mass profiles are only tuned to match simulations
at r = rmax, which is where M(r)/r is maximized. Below rmax we plot them as dotted lines; since
these profiles are derived assuming gradual mass accretion, they are not expected to be accurate at
small r because the mass there accreted rapidly.

signal from microhalos, it is necessary to account for these mergers’ impact.

The precise impact of mergers between microhalos on their density profiles, and hence annihilation

rates, is yet unclear. However, we can make an estimate in the following way. If a microhalo transitions

from a profile with inner density asymptote ρ = Ar−3/2 to the NFW profile with scale parameters

ρs and rs, then ρ2
sr

3
s ∝ A2 from dimensional considerations. Realistically, such a transition occurs

simultaneously with mass increases caused by mergers, but we treat the two effects separately for

simplicity. The resulting NFW profile’s J factor is11

J = (4π/3)ωA2, (7.5)

where ω is the undetermined proportionality factor acquired in the transition, i.e., ρ2
sr

3
s = ωA2.

We expect ω & 1 from the following examples. If a density profile transitions from ρ = Ar−3/2

to ρ = ρsrs/r with mass conserved within the scale radius rs, then ρ2
sr

3
s = (4/3)2A2, i.e., ω =

(4/3)2 ' 1.8. Alternatively, suppose a microhalo initially has density profile ρ = Ar−3/2(1 + r/r̃)−3/2

[226] or ρ = Ar−3/2[1 + (r/r̃)3/2]−1 [278] for some scale radius r̃, each of which appropriately obeys

11We integrate the NFW profile to radius ∞, but the result is only marginally different if the profile is cut off at any
radius r & rs.
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ρ = Ar−3/2 when r � r̃. If these profiles transition into NFW profiles while preserving the radius

rmax of maximum circular velocity and the corresponding enclosed mass mmax, then the transitions

are characterized by ω = 5.33 and ω = 8.05, respectively. We conservatively assume ω = (4/3)2 in

line with the first example, but this factor carries cleanly through all calculations.

Chapter 4 found that the sum
∑
A2 over all halos is predicted by the model with reasonable

accuracy even after mergers take place, which suggests that J ∝ A2 is additive in mergers. This

property can be understood in light of a conceptual argument. For halos of fixed density profile (e.g.,

NFW), J ∝ ρsM , where M is halo mass. If halo masses are additive in mergers and characteristic

densities ρs are not altered,12 then J factors are also additive. Indeed, Ref. [339] found that in

mergers between identical halos, ρs tends to either be preserved or grow slightly, and rs grows

roughly as would be expected from the doubling of mass. This finding lends support to the notion

that J factors are approximately additive in mergers.

Further work is needed to tease out precisely how mergers alter the annihilation rates in halos,

but we exploit the approximate conservation of the sum
∑
J to obtain an adequate estimate. We

compute the aggregate annihilation signal from microhalos by summing the J factors given by

Eq. (7.5) over the previously predicted halo population. If N peaks are sampled to produce the

halo population and n̄ is the number density of peaks in the primordial density field (computed as

in Chapter 4 or Ref. [269]), then the cosmologically averaged squared dark matter density within

microhalos is

ρ2 =
n̄

N

∑

i

Ji, (7.6)

where Ji is the J factor of the ith halo. The mean gamma-ray luminosity expected from microhalos,

per cosmological volume, is in turn

dL

dV
= ρ2

〈σv〉
2m2

χ

∫ mχ

Eth

Eγ
dNγ

dEγ
dEγ , (7.7)

for threshold photon energy Eth, where mχ is the mass of the dark matter particle, 〈σv〉 is its

12The central cusp can still become denser at a given radius when ρs is fixed if rs grows. Also, we assume that
in mergers between halos of different ρs, the density of the merger remnant is the mass-weighted average of the
densities of the progenitors.

162



20 25 30 35 40

kcut/kRH

109

1010

1011

1012

ρ
2
/
ρ̄
2

TRH = 1 TeV
TRH = 2 GeV
TRH = 10 MeV

Figure 7.5: The annihilation boost factor (circles) relative to uniform density as a function of EMDE
scenario. Annihilation rates are strongly sensitive to kcut/kRH and only weakly sensitive to TRH. For
comparison, we also plot as crosses the annihilation boost factors computed using the procedure in
Refs. [206, 224, 225], which uses Press-Schechter theory as described in the text.

annihilation cross section, and dNγ/dEγ is the differential photon yield from annihilation events.

The factor by which dark matter annihilation is boosted, relative to uniform density, is ρ2/ρ̄2,

where ρ̄ is the mean dark matter density. In Fig. 7.5, we plot this factor (as circles) as a function

of EMDE scenario. The annihilation boost is strongly sensitive to kcut/kRH; this ratio sets the

maximum enhancement to density variations, so it strongly influences halo formation times and

hence the density within microhalos. TRH also has a small influence on ρ2/ρ̄2 because it sets the

duration of the last radiation-dominated epoch, during which the EMDE-enhanced density contrasts

grow logarithmically.

For comparison, we also compute the annihilation boost factor using the procedure in Refs. [206,

224, 225]. Microhalos are counted using a Press-Schechter mass function, and each microhalo is

assumed to have concentration c ≡ rvir/rs = 2 at some formation redshift zf . The annihilation

boost factor is thus formally a function of zf , but as the final step, zf is chosen such that the

annihilation boost is maximized. These estimates are plotted in Fig. 7.5 as crosses. We find that this

procedure overestimates annihilation rates by a factor of about 4 relative to the procedure described

in this section. This discrepancy likely owes to the time it takes for a halo to stabilize its NFW (or

alternative r−3/2) profile after formation. A halo maintains c ∼ 2 for a significant duration before

its density profile (in physical coordinates) ceases to evolve, at which point c begins to grow as the

background density drops. The assumption that c begins to grow at halo formation consequently

leads to overestimation of the halo’s central density.
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7.3.3 Microhalo density profiles

The procedure of the previous section suitably treats the impact of mergers between microhalos on

their aggregate annihilation signals. However, a subset of the microhalo population is further altered

at late times (z . 20) by accretion onto much larger halos, such as those of galaxies. Chapter 5

developed a model that predicts the evolution of subhalo J factors due to a host halo’s tidal forces,

while Chapter 6 modeled the evolution of microhalos due to encounters with individual stars. These

models require the scale parameters ρs and rs of the microhalo population, and in this section we

use Chapter 4’s framework to estimate their distribution. As a bonus, this distribution will assist in

building an intuition for the microhalo population that the framework predicts.

For each halo, we obtain ρs and rs from the structural parameters rmax and mmax predicted from

the Chapter 4 framework by assuming an NFW density profile. These parameters could be altered

by mergers between microhalos, but Chapter 4 found that while mergers cause rmax and mmax to

increase relative to their model predictions, this growth is relatively minor.13 Thus, lacking a precise

understanding of how density profiles are influenced by mergers, we assume that the predictions of

ρs and rs remain accurate. In this way, we obtain a distribution of microhalos in ρs and rs, and

in the coming sections we will apply the dynamical evolution models of Chapters 5 and 6 to this

distribution in order to predict the present-day aggregate annihilation rate.

Figure 7.6 shows the microhalo distribution in ρs and rs, weighted by contribution to the

annihilation signal, for an EMDE scenario with TRH = 2 GeV and kcut/kRH = 20. The bulk of

the microhalos form from density fluctuations near the free-streaming cutoff scale, and these halos

comprise the dense clump in rs-ρs space depicted in Fig. 7.6. However, the halo distribution also

includes a tail of halos with increasingly large rs and small ρs. To understand this tail, we note that

as a function of comoving scale q, initial density contrasts δ that enter the horizon during an EMDE,

but are much larger than the free-streaming cutoff, scale as δ ∝ q−2. A microhalo’s characteristic

density is proportional to the background density at its formation time, so if a density contrast δ

13Chapter 4 found that as many as six major mergers only raised a halo’s rmax by about 15% relative to its model
prediction. mmax grew by as much as 50% under the same conditions, but this change compensates the change in
rmax to leave ρs ∝ mmax/r

3
max almost unaltered. Note that rmax and mmax could be significantly altered by mergers

even if they do not move appreciably relative to their predicted values; this would imply that the predictions already
accounted for the mergers.
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Figure 7.6: Distribution of the annihilation signal in the NFW scale parameters ρs and rs of source
microhalos, as predicted using the framework in Chapter 4. The EMDE scenario represented has
TRH = 2 GeV and kcut/kRH = 20. The tail at large rs and small ρs obeys ρs ∝ r

−6/(2+µ)
s , where

µ = 0.901 is the linear growth exponent, and represents the rare halos that form from fluctuations
much larger than the cutoff scale (see the text). However, the dominant contribution to annihilation
signals comes from the densest microhalos.

collapses to form a microhalo, then that microhalo has ρs ∝ δ3/µ, where µ = 0.901 is the linear

growth exponent (see Appendix F.1). Meanwhile, if q is the comoving scale of that fluctuation, then

the microhalo’s characteristic size is rs ∝ qδ−1/µ. Consequently, for microhalos forming from density

fluctuations that enter the horizon during an EMDE but are much larger than the free-streaming

scale, ρs ∝ r−6/(2+µ)
s . The low-density halo tail in Fig. 7.6 follows this relationship.

As another demonstration that the predicted population is sensible, we compare it to the

population predicted by Press-Schechter theory [287] using ellipsoidal collapse [373]. Press-Schechter

theory predicts a mass function dn/dM describing the halo number density n distributed in halo

mass M . In contrast, our halo population is distributed in the density profile parameters ρs and rs.

However, we can connect the two distributions by assuming M = Mvir is the mass enclosed within

the virial radius rvir that encloses an average density of 200 times the cosmological mean (which

depends on the scale factor). Meanwhile, given ρs and rs, the same virial mass Mvir can be estimated

by assuming that the NFW profile is accurate out to rvir. In Fig. 7.7, we plot, for both methods

and at several different redshifts, the number density n(< M) of halos with mass smaller than M in

the EMDE scenario with TRH = 2 GeV and kcut/kRH = 20. The halo distributions predicted by the

two methods are offset in mass M by up to a factor of 2, but this discrepancy is sufficiently minor

and consistent that it is likely connected to the assumptions made above in order to compare the
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Figure 7.7: Comparison between the halo population predicted using the methods of Chapter 4 and
that predicted by Press-Schechter theory. We plot the number density n(< M) of halos with mass
smaller than M at several redshifts as predicted by both methods for an EMDE cosmology with
TRH = 2 GeV and kcut/kRH = 20. The halo distributions predicted by the two methods are offset in
mass by a factor as large as 2, but since the two frameworks predict different quantities, certain
assumptions were necessary that may not be accurate (see the text). Otherwise, the populations
match reasonably well at early times. At late times, the Chapter 4 framework’s neglect of halo
mergers causes it to overpredict the halo count relative to the Press-Schechter calculation.

two prediction schemes. Otherwise, the two populations match reasonably well at early redshifts

z & 50. At late times, halo mergers start to become significant, causing the Chapter 4 framework to

overpredict the number of small halos relative to Press-Schechter.

Finally, we discuss how the microhalo population is influenced by different EMDE cosmologies.

In Fig. 7.8, we show the median scale density and radius values, ρs and rs, associated with a variety

of EMDE scenarios. As we noted in Sec. 7.3.2, the ratio kcut/kRH has a large impact on ρs because it

sets the amplitudes of the most extreme density fluctuations, while TRH exerts only a minor influence

by controlling the duration of the radiation-dominated epoch. In contrast, rs is strongly sensitive to

TRH because later reheating means larger-scale density fluctuations are enhanced, while kcut/kRH

has a minor impact that owes to the fact that halos that form earlier, while the Universe was smaller,

stabilize their density profiles at a smaller physical size.

7.4 Isotropic gamma-ray background

In an EMDE cosmology, dark matter annihilation within microhalos roughly traces the dark

matter distribution, producing a signal similar to that of decaying dark matter. Consequently,

it would contribute substantially to the IGRB. In this section, we use the Fermi Collaboration’s
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Figure 7.8: Median NFW scale density ρs and radius rs of microhalos in a variety of EMDE scenarios.
The ratio kcut/kRH has a large impact on ρs and a small impact on rs, while the reverse is true of
TRH.

measurement of the IGRB [477] to constrain annihilation within microhalos.

7.4.1 Limits on annihilation

For a given annihilation channel, we can translate published bounds on the dark matter lifetime

from the IGRB directly into bounds on the annihilation cross section using the procedure in Ref. [206].

This translation is possible because annihilation within (unresolved) microhalos and dark matter

decay both produce a gamma-ray signal that tracks the dark matter mass distribution.14 We equate

the annihilation rate per mass, Γ/Mχ, for particles with mass mχ and cross section 〈σv〉 to the decay

rate per mass of particles with mass 2mχ and effective lifetime τeff , obtaining

Γ

Mχ
=
〈σv〉
2m2

χ

ρ2

ρ̄
=

1

2mχτeff
, (7.8)

where ρ̄ and ρ2 are the mean and mean squared dark matter density, respectively, as in Sec. 7.3.2.

Thus, a lower bound on τeff for particles of mass 2mχ leads to an upper bound on 〈σv〉 for particles

14The correspondence between annihilation within microhalos and decay breaks down at sufficiently high redshifts
that the microhalos have not yet formed. However, microhalos arising from the EMDE cosmologies we consider
form at redshifts z & 200, which lie well beyond the redshifts z . 20 relevant to any contribution to the IGRB from
dark matter decay [478].
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of mass mχ. This procedure neglects disruption of microhalos within host halos, the impact of which

we discuss soon.

We use Eq. (7.8) to derive bounds on annihilating dark matter from two classes of limits on

the dark matter lifetime. Both employ the Fermi Collaboration’s measurement of the IGRB [477].

The first, from Ref. [466], conservatively requires that the predicted gamma-ray flux from dark

matter decay not exceed the flux reported by Fermi within any spectral bin. The second, from

Ref. [467], employs models of astrophysical background gamma-ray sources, such as star-forming

galaxies and active galactic nuclei, to dramatically reduce the gamma-ray flux that can be attributed

to dark matter. Through Eq. (7.8), these decay bounds (for particles of mass 2mχ) translate into

conservative and aggressive bounds on the dark matter annihilation cross section 〈σv〉 (for particles

of mass mχ), respectively.

In Fig. 7.9, we plot the resulting constraints on dark matter annihilating into bb̄ for several

EMDE cosmologies. Recall from Sec. 7.2 that dark matter with a vast range of parameters can be

brought to the observed relic abundance by tuning TRH and Tdom; the main requirement is that mχ

must exceed TRH by a sufficient margin to avoid overproducing dark matter for cross sections below

the canonical 3× 10−26 cm3s−1. If kcut/kRH = 40, the aggressive constraints can probe thermal-relic

cross sections as small as 〈σv〉 ∼ 10−32 cm3s−1. Constraints are weaker for kcut/kRH = 20, but the

aggressive constraints can still reach as far as 〈σv〉 ∼ 10−30 cm3s−1.

Equations (7.1) and (7.2) set the conditions under which the density fluctuation power spectra we

employed are expected to be accurate, and we mark on Fig. 7.9 the regions that fail these conditions.

Only a small region with large 〈σv〉 and small mχ fails Tf > 2TRH (without also overproducing dark

matter). On the other hand, cross sections 〈σv〉 that are less than a few orders of magnitude below

the canonical 3× 10−26 cm3s−1 tend to fail Tdom/TRH > 5(kcut/kRH)3/2 if Tdom is tuned to effect

the observed relic abundance. Constraints on thermal relics are tentative within these regions, and

a more careful treatment is needed of the power spectra that arise therein. Using the appropriate

power spectra would delay microhalo formation, weakening the bounds on 〈σv〉.

7.4.2 Tidal suppression

Compared to the gamma-ray signal from decaying dark matter, the signal from annihilation within

microhalos is suppressed by tidal effects within host halos. We neglected this effect when deriving

the constraints shown in Fig. 7.9, and we now estimate its impact. Dark matter’s contribution to
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Figure 7.9: Upper bounds on the cross section for dark matter annihilating to bb̄ for two reheat
temperatures TRH = 10 MeV (top) and TRH = 2 GeV (bottom). In each case, we consider both
kcut/kRH = 20 (green) and kcut/kRH = 40 (blue) and plot both the conservative and aggressive
bounds derived from Fermi-LAT’s measurement of the IGRB; see the text. The shaded region on the
left is disallowed because it would overclose the Universe, while the shaded region on the right marks
where the dark matter’s coupling constant exceeds unity. The black hatched region fails Eq. (7.2)
while the white hatched regions (different for each kcut/kRH) fail Eq. (7.1). The density fluctuation
power spectra we employed do not apply within these regions, so constraints therein are tentative;
further work is needed to account for the altered power spectra.
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the IGRB comes from both the Galactic halo and extragalactic dark matter. To estimate the tidal

influence of extragalactic host halos, we use Press-Schechter theory with ellipsoidal collapse [373] to

model the host halo mass function dn/dM , where n is the number density of hosts. We exclude

EMDE-boosted microhalos (as hosts) by only considering halos down to the mass scale associated

with the reheating wave number kRH. We associate a concentration c = Rvir/Rs to each halo mass

using the median concentration-mass relation c(M) from Ref. [383], and we define Rvir as the radius

enclosing 200 times the critical density to match that work.

With the host-halo population constructed, the next step is to calculate the suppression of

microhalo annihilation signals within each host. In Appendix F.2, we use the model in Chapter 5 to

compute the factor S by which tidal evolution scales the aggregate annihilation rate within subhalos

distributed throughout the host’s phase space. A convenient fitting function for S(ρs/Ps, t
√
GPs, c)

is presented in that appendix, where ρs is the scale density of the microhalos,15 Ps is the scale

density of the host, c = Rvir/Rs is the host’s concentration, and t is the duration of tidal evolution.

At a given redshift z, the host scale density is a function Ps(c,M) of mass and concentration. If we

let S̄(ρs, t) be the global factor by which the annihilation rate within microhalos is scaled due to

tidal evolution for the duration t, then

S̄(ρs, t) = 1− 1

ρ̄

∫
dM

[
1−S

(
ρs
Ps
, t
√
GPs, c

)]
M

dn

dM
(7.9)

(with Ps and c functions of M).

We set the tidal evolution duration to be the time elapsed since z = 20; this choice only marginally

affects our results since any reasonable duration is essentially the age of the Universe. Figure 7.10

shows S̄ as a function of z (solid lines) for several different ρs. A limitation of this calculation,

however, is that at any given time, microhalos are assumed to have resided within their current host

since z = 20. Additionally, subhalos are neglected as possible hosts. The largest host halos become

less dense as time goes on, so these deficiencies explain why we improperly find that microhalo

annihilation signals become less suppressed (S̄ grows) over time even as the microhalos experience

15S can be averaged over a distribution of ρs, weighting by J factors, to accommodate a distribution of microhalos.
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Figure 7.10: Global scaling factor S̄ for dark matter annihilation within microhalos of scale density ρs
due to tidal effects from host halos. The host population is characterized with a Press-Schechter mass
function at each redshift z. Solid lines assume tidal evolution from redshift 20 to z, while dashed
lines assume tidal evolution from z = 20 to z = 0 regardless of the redshift used to characterize the
hosts. We expect that the minimal value of S̄ under the latter calculation is a reasonable estimate
for the true tidal scaling factor today; see the text. Dotted lines show the results using the fitting
function in Appendix F.2 instead of integrating the individual tidal scaling factors from Chapter 5
over host halos’ phase spaces as described in that appendix. The lower black line indicates the
fraction of microhalos that are not subhalos. The upper black line marks the scaling of microhalo
annihilation rates that results from an extreme estimate of disruption within galaxies. For values
ρs ≥ 1012 M�/kpc3 relevant to the EMDE scenarios we consider, all tidal suppression estimates are
marginal.

uninterrupted tidal evolution.

To approximately account for this effect, we carry out the same calculation except that at each

redshift z, we assume the full duration of tidal evolution (from z = 20 to z = 0) instead of only

assuming tidal evolution up until the redshift z. This procedure means we can assume the microhalos

continue to reside within the dense host population that existed at some redshift z > 0 even if

those hosts later accrete onto superhosts. On the one hand, this procedure could underestimate the

tidal suppression because the smaller number and size of host halos at high redshift implies that

fewer microhalos are within hosts at all (see the field fraction curve in Fig. 7.10). On the other

hand, it could overestimate the tidal suppression because we assume microhalos continue to reside

within their dense original hosts even though many microhalos would be stripped onto a less dense

superhost. In Fig. 7.10, we plot, as dashed lines, S̄ computed using this procedure for several ρs.

Here, the redshift z sets the host-halo population only. We expect that the minimal value of S̄,
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as a function of z, will be a reasonable estimate for the global tidal scaling factor. For ρs ≥ 1012

M�/kpc3, S̄ & 0.9, and as Fig. 7.8 indicates, 1012 M�/kpc3 is the median ρs for kcut/kRH = 20

(with the effect of TRH being marginal). If weighted by contribution to the annihilation signal,

the average density would be even higher. Thus, we conclude that the contribution to the IGRB

from annihilation within extragalactic microhalos at z ' 0 is suppressed by less than 10% due to

tidal effects if kcut/kRH & 20. Annihilation within high-redshift microhalos—which also contributes

significantly to the IGRB—would be even less suppressed.

Microhalos can be also disrupted by baryonic structure within halos. As a simple estimate, we

assume that galaxies span their halos’ scale radii; this is roughly true of the Milky Way and of

the Draco dwarf (see Sec. 7.5). We further assume that any microhalo within its host’s galactic

extent, defined in this way, is destroyed; this is an extreme estimate, since as we see in Sec. 7.5,

annihilation from microhalos within the Draco dwarf is only slightly suppressed by encounters with

stars. Finally, we assume any halo larger than 105M� forms a galaxy. The upper solid line in

Fig. 7.10 shows the global scaling factor S̄, as a function of redshift z, evaluated using these rules

on the host-halo populations computed earlier. We find that even in this extreme picture, dark

matter annihilation within microhalos is only suppressed by about 10% due to galactic disruption.

Neither tidal forces from host halos nor disruption due to galaxies significantly reduces extragalactic

microhalos’ contribution to the IGRB.

Finally, we estimate the tidal suppression of the contribution to the IGRB from microhalos

within the Galactic halo. To match the assumptions made in Ref. [467], we assume the Milky Way

halo has an NFW density profile with scale radius 20 kpc and scale density set so that the local

dark matter density at radius 8.25 kpc is 0.4 GeV/cm3. We integrate the tidal scaling factors as

in Appendix F.2, but instead of integrating over the Milky Way’s volume, we integrate along the

line of sight perpendicular to the Galactic plane out to the 300-kpc virial radius. The precise angle

makes little difference. The resulting tidal scaling factor SGal is plotted in Fig. 7.11 as a function of

microhalo scale density ρs. For ρs ≥ 1012 M�/kpc3, the tidal suppression is negligible.

7.5 Gamma rays from the Draco dwarf

Dwarf spheroidal galaxies represent some of the most promising targets for dark matter annihila-

tion searches due to their high dark matter density and low astrophysical contamination [344]. Since

the signal from annihilation within microhalos is similar to that from dark matter decay, we focus on
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Figure 7.11: Tidal suppression of the contribution to the IGRB from microhalos within the Galactic
halo. We plot, as a function of microhalo scale density ρs, the factor SGal by which annihilation
rates along a line of sight are scaled. For values ρs ≥ 1012 M�/kpc3 relevant to the EMDE scenarios
we consider, tidal effects reduce the annihilation rate by less than 2%.

the Draco dwarf, which among dwarf galaxies supplies the strongest constraints on the dark matter

lifetime [479]. However, unlike the decaying dark matter signal, the signal from annihilation within

microhalos is altered by the influence of tidal forces from the host halo and high-speed encounters

with other microhalos. Due to their small size, microhalos are also susceptible to encounters with

individual stars. We must account for these effects in order to characterize the microhalo-dominated

annihilation signal from Draco.

To characterize Draco’s dark matter halo, we assume its maximum circular velocity is vmax = 18.2

km/s [480] and its density at radius 150 pc is ρ(150 pc) = 2.4× 108 M�/kpc3 [421]. If the halo has

an NFW density profile, then these constraints imply it has scale radius Rs = 0.435 kpc and scale

density Ps = 1.5× 108 M�/kpc3 (we use capital letters to distinguish these parameters from those

of the microhalos). While there is evidence that many galactic halos possess uniform-density cores

instead of the NFW profile’s cusp (e.g., Ref. [420]), Draco’s halo appears to be cuspy [421]. We

assume the microhalos trace Draco’s density profile with an isotropic velocity distribution.

As for its stellar content, we assume Draco has stellar luminosity 2.7×105L�, projected half-light

radius 0.22 kpc [481], and a stellar mass-to-light ratio of 1.8 M�/L� [482]. Additionally, we adopt

a Plummer density profile [483] for its stellar mass. To model the masses of individual stars, we

employ a Kroupa initial mass function with minimum mass 0.01M� (we include brown dwarfs) and

a high-mass index of 2.7 [484]. Since Draco largely ceased star formation 10 Gyr ago [485], roughly

the lifetime of a 1 M� star, we impose a maximum stellar mass of 1 M�. However, we still wish to

include the white dwarf remnants of dead stars, so we assume any star initially heavier than 1 M�
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weighs 1 M�.16 Finally, using the mean of the stellar mass distribution, we are able to fix the stellar

number density profile n∗(R).

7.5.1 Suppression of annihilation rates

Due to their small size, we expect microhalos to have essentially the same phase-space distribution

as dark matter particles within Draco’s halo. Thus, at each radius R within Draco, we sample 200

microhalo orbits using the isotropic distribution function given in Ref. [422]. To efficiently apply

the models in Chapters 5 and 6 to full distributions of microhalos, we use these sampled orbits to

construct, at each radius, an interpolation table in ρs for the orbit-averaged factor J/Jinit by which

annihilation within microhalos is suppressed. We consider ρs alone because the scale radius rs has

no impact on tidal evolution, and we verified that for relevant microhalo parameters, rs also has no

impact on the evolution by stellar encounters. Subsequently, we use this interpolation table to find

J/Jinit for the full distribution of microhalos. We then average J/Jinit over all microhalos, weighting

each halo by its initial J factor given by Eq. (7.5).

It is straightforward to apply the model in Chapter 5 to each microhalo orbit to determine the

suppression of the J factor due to tidal forces from Draco’s halo. In Fig. 7.12, we show, as a function

of radius within Draco, this model’s prediction of J/Jinit (dashed line) averaged as described above

over the microhalo distribution. Microhalo J factors also oscillate over each orbital period, becoming

largest near pericenter, and the model in Chapter 5 does not account for these oscillations since

they do not affect the magnitude of an annihilation signal. However, they can change the signal’s

morphology since they systematically bias it toward smaller radii. In Appendix F.3, we use the

simulations from Chapter 5 to explore these oscillations and present a simple model for their impact.

The results of this model are included in the scaling factor due to tidal forces depicted in Fig. 7.12,

but we also show as dotted lines the scaling if these oscillations are neglected. Evidently, their

impact is negligible for the host-subhalo parameters relevant to our scenario.

Chapters 5 and 6 describe how to account for tidal forces and stellar encounters separately.

16This treatment is approximate; white dwarf masses vary and stellar masses change over their lifetimes. However, the
following scaling argument shows (and we verified) that the choice of star masses M∗ has little impact on microhalo
evolution. The energy injected by an encounter with impact parameter b scales as ∆E ∝M2

∗ b
−4. Due to this scaling,

the total energy injected by all encounters is dominated by the closest few encounters, which have b ∝ n−1/2
∗ . But

at fixed stellar mass density, n∗ ∝M−1
∗ . Together, these relationships imply ∆E ∝M0

∗ .
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Figure 7.12: Suppression of dark matter annihilation rates in microhalos as a function of radius R
within the Draco dwarf. At each radius we average over 200 randomly sampled orbits. Additionally,
for each orbit, we average over 200 randomly sampled stellar encounter histories. The EMDE scenario
represented has TRH = 2 GeV and kcut/kRH = 20.

However, it is not obvious how to combine the two effects. To determine the appropriate procedure, we

carry out additional simulations using the same procedures as Chapters 5 and 6. In these simulations,

a microhalo experiencing tidal forces is also subjected to stellar encounters. Appendix F.4 presents

the model we build to describe this scenario. The simulations indicate that it makes little difference

when the stellar encounter occurs, so our model is conceptually based on the idea of applying tidal

evolution first and stellar encounters afterward.

To determine the impact of stellar encounters using the framework of Chapter 6 and Appendix F.4,

we must randomly sample stellar encounter histories for each microhalo orbit. Let f(R;V∗) be the

stellar velocity distribution at radius R, which we assume to be Maxwell-Boltzmann with velocity

dispersion equal to that of the dark halo at the same radius. As before, we take n∗(R) to be

Draco’s stellar number density profile. We also take Vh(R) and Vr,h(R) to be the microhalo’s total

velocity and the radial component of its velocity, respectively, which depend on the orbit. With

these definitions, the differential number of stellar encounters per radius R, impact parameter b,

stellar velocity V∗, and cosine µ ≡ cos θ of the angle between Vh and V∗ is

d4Nenc

dbdRdV∗dµ
= πb

Vrel[Vh(R), V∗, µ]

Vr,h(R)
n∗(R)f(R;V∗), (7.10)

where

Vrel(Vh, V∗, µ) ≡
[
(Vh−µV∗)2+(1−µ2)V 2

∗
]1/2 (7.11)
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is the relative velocity between the halo and the star. We use Eq. (7.10) to sample the stellar

encounters for each orbit, evaluating the µ integral analytically and using a Markov chain Monte

Carlo method [486] to sample R and V∗. For each encounter, we sample the stellar mass M∗ from

the modified Kroupa distribution described earlier. We assume that each orbit proceeds for 13.6 Gyr,

roughly the time since z = 20, and for each orbit we sample 200 encounter histories. We determine

the impact of stellar encounters for each history using the models in Chapter 6 and Appendix F.4,

and Fig. 7.12 shows the resulting J-factor suppression averaged over orbits and encounter histories.

We include the effect of the J-factor oscillations described in Appendix F.3, although, as noted

above, their impact is negligible.

Finally, we explore the impact of microhalo-microhalo encounters. We will see that their influence

on microhalo J factors is marginal. For concreteness, we consider a microhalo on a circular orbit

at Draco’s 0.22-kpc half-light radius, and for its density profile we adopt separately the median

parameters ρs and rs associated with the reheat temperatures TRH = 10 MeV and 2 GeV and ratios

kcut/kRH = 20 and 40. We model the microhalos it encounters as point objects so that we can

compute the energy each encounter injects similarly to stellar encounters; note that energy injections

would only decrease if we were to model the microhalos as extended objects. These microhalos

are distributed along the density profile P (R) of Draco’s halo; i.e., the number density profile of

microhalos is nP (R)/ρ̄, where n is the cosmological mean number density of microhalos. We leave n

as a free parameter for now, although it is related to the known number density npeak of peaks in

the primordial density field. Finally, to fix the masses M of microhalos, we assume that they contain

a fraction f of the dark matter, so M = fρ̄/n. Tidal effects likely reduce f far below 1 inside Draco

by stripping microhalos’ massive but weakly bound outskirts, and we generously assume f = 0.25.

Using a similar procedure to our treatment of stellar encounters above, we derive the fractional

change ∆J/J in the subject microhalo’s J factor caused by microhalo encounters over Draco’s age.

We seek only the relative impact of microhalo encounters, so we do not combine them with tidal

evolution as in Appendix F.4, although as prescribed in that appendix we sum the encounters’

energy injections instead of applying the encounters consecutively. Figure 7.13 plots ∆J/J as a

function of the mean number density n of microhalos; smaller n means more massive microhalos,

176



104 106 108 1010 1012 1014 1016

n (kpc−3)

10−4

10−2

100

∆
J
/J

T
R
H
=
2 GeV

20

kcut/kRH = 20

T
R
H
=
10 MeVkcut/kRH = 20 40

kcut/kRH = 40

40

stars

n
p
e
a
k

kcut/kRH = 40 20

Figure 7.13: Impact of encounters with other microhalos on a microhalo with the median density
profile parameters ρs and rs associated with the displayed TRH and kcut/kRH. This microhalo orbits
Draco circularly with radius 0.22 kpc. Black lines show the fractional change ∆J/J in the microhalo’s
J factor due to all encounters over Draco’s age; this ratio is averaged over 104 random encounter
histories and plotted as a function of the cosmological mean number density n of microhalos. We
assume 25% of dark matter is in microhalos. As a reference, the number density npeak of peaks
in the primordial density field is marked for the relevant EMDE cosmologies with vertical lines;
mergers deplete n relative to npeak, but likely by much less than an order of magnitude. Evidently,
the impact of encounters with microhalos is negligible as long as n is not much smaller than npeak.
For comparison, we also mark with horizontal lines the ∆J/J induced by stellar encounters. For
horizontal and vertical lines, the length indicates which TRH curve it matches.

which outweighs their reduced numbers for most n.17 For each EMDE scenario, we also indicate

npeak. Evidently, ∆J/J � 1 as long as n is not smaller than npeak by more than an order of

magnitude. While mergers cause n < npeak, they depleted n by less than a factor of 2 by z = 50

in the EMDE scenario simulated by Chapter 4. For this reason, and because the assumptions

made in this calculation were broadly biased toward overestimating their impact, we conclude that

microhalo-microhalo encounters can be neglected. For comparison, we also mark in Fig. 7.13 the

impact of stellar encounters on the same microhalo.

17 The story is different for stars; increased number density there approximately compensates reduced mass (e.g.,
footnote 16). This contrast is a consequence of the very different regimes that stellar and microhalo encounters
occupy. When the closest encounter is typically farther than the subject microhalo’s scale radius rs, as is the case
with stellar encounters, the total energy injection is dominated by the closest few encounters due to the ∆E ∝ b−4

scaling with impact parameter b. As b drops below rs, this scaling shallows toward ∆E ∝ b0 [328, 464], so when
there are many encounters with b < rs, the total energy injection is broadly distributed across all such encounters.
The latter case applies to microhalo encounters with sufficiently large n.
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7.5.2 Gamma-ray emission

We denote by S(R) the orbit-averaged tidal suppression of the J factor, as a function of radius

R about Draco, computed in the last section. With this quantity, we can predict the annihilation

signal from microhalos within Draco. If P (R) is the density profile of Draco’s halo and ρ̄ is the

cosmological mean dark matter density, then

dL

dV
=

dL

dV

P (R)

ρ̄
S(R) (7.12)

is the gamma-ray luminosity, per volume, from dark matter annihilation at radius R. Here, dL/dV

is the cosmological mean value given by Eq. (7.7). By integrating this emission over the line of sight,

we obtain the differential flux per solid angle

dF

dΩ
=

1

4π

∫ xmax

−xmax

dx
dL

dV

∣∣∣∣
R=
√
x2+R2

proj

(7.13)

at projected radius Rproj from Draco’s center, where xmax ≡
√
R2

max −R2
proj and Rmax is the

boundary radius of Draco’s halo, which we fix shortly.

The gamma-ray flux from microhalos exhibits significant sensitivity to Draco’s density profile at

large radii, which cannot be constrained by stellar kinematics beyond the 1.9-kpc radius of its most

distant observed star [487]. The density profile at large radii would be suppressed by tidal forces

from the Milky Way and its halo, and we account for this effect by assuming the density profile

P (R) = Psy
−1(1 + y)−2[1 + (y/yt)

δ]−1, y ≡ R/Rs; (7.14)

the [1 + (y/yt)
δ]−1 suppression factor, with free parameters yt and δ, is motivated by prior studies

of tidal evolution in N -body simulations [340, 341, 462]. In Appendix F.5, we use the results of

the tidal evolution simulations of Ref. [342], along with Draco’s orbit and history, to fix yt = 4.3

and δ = 3.9. We then set Rmax = 4 kpc because this profile reaches the background density of the

Galactic halo at this radius.

For illustration, Fig. 7.14 shows the flux profile dF/dΩ for one EMDE scenario as a function of

angle θ = Rproj/D. We assume Draco lies at distance D = 76 kpc [488], so the emission extends out
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Figure 7.14: Demonstration of the influence of tidal forces and stellar encounters on the microhalo-
dominated annihilation signal from Draco. We plot the projected emission profile (flux per solid
angle) in the EMDE cosmology with TRH = 2 GeV and kcut/kRH = 20 if both, one, or neither of these
effects are accounted for. Note that without suppression, the signal is morphologically equivalent to
that of dark matter decay. All curves are normalized to the total flux F0 (out to 3◦) that would
be expected in the absence of tidal evolution and stellar encounters. We also show the signal from
dark matter annihilation within Draco’s smooth halo for comparison (dotted lines); this signal is
plotted both normalized to its total flux and, in the bottom left, with the same dark matter particle
as the microhalo curves. The latter curve illustrates the extent to which microhalos dominate the
annihilation signal.

to Rmax/D = 3◦ (not shown). For comparison, we also show the flux profiles if stellar encounters are

neglected and if tidal evolution is also neglected. Evidently, tidal evolution and stellar encounters

both influence the flux profile appreciably. Note that the unsuppressed curve is equivalent to the

signal from decaying dark matter. As another comparison, we plot the flux profile from dark matter

annihilation within Draco’s smooth halo; it peaks much more sharply at small angles and drops off

more quickly at large angles. We also show the smooth annihilation profile normalized to the same

dark matter properties as the microhalo flux profiles; this profile represents the contribution from

dark matter outside of microhalos.18

In Fig. 7.15, we plot the flux profiles dF/dΩ in a variety of EMDE cosmologies, including the

contribution from annihilation outside of microhalos. Tidal evolution and stellar encounters evidently

induce marked differences in signal morphology between the scenarios. This diversity arises because

18The annihilation rate outside of microhalos is scaled by the fraction 1− f of dark matter not in microhalos, but we
assume tidal effects cause 1− f ' 1 at the radii where smooth annihilation contributes nonnegligibly.
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Figure 7.15: Projected emission profiles (flux per solid angle) for the Draco dwarf in a variety of
EMDE scenarios. In each case, the emission profile is normalized to the total flux F0 that would
be expected in the absence of tidal evolution and stellar encounters. There are clear differences in
signal morphology between the different EMDE scenarios; these differences largely arise because
denser microhalos are more resistant to disruption. Thus, cosmologies that form microhalos earlier
yield less-suppressed signals.

denser microhalos are more resistant to these effects. As Fig. 7.8 shows, scenarios with larger

kcut/kRH result in denser halos, while TRH mostly controls halo size and only minimally affects

density. Thus, scenarios with larger kcut/kRH yield significantly less-suppressed annihilation signals.

7.5.3 Limits on annihilation

We calculate the best-fitting flux and spectrum of the Draco dwarf using established techniques

for the detection of dim, spatially extended sources, which were first developed for dwarf galaxies by

Refs. [209, 211, 489, 490]. We analyze 11 years of Fermi-LAT data taken between August 4, 2008 and

September 3, 2019, extracting Pass 8 source-class photons recorded with an energy between 100 MeV

and 1 TeV observed in a 30◦× 30◦ box centered on the position of Draco. We place standard cuts

on the data quality and LAT configuration during events and divide the recorded events into 32

logarithmic energy bins and 0.1◦ angular bins over the region of interest.

In order to calculate the improvement to the log-likelihood generated by adding an extra degree

of freedom at the position of the Draco dwarf, we first calculate the log-likelihood fit of a background

model (which does not include the dwarf) to the Fermi-LAT data. We utilize the recently released
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4FGL catalog [491], the gll_iem_v07 diffuse model, and the iso_P8R3_SOURCE_V2_v1 isotropic

background model. We independently fit the normalization of each diffuse source, as well as every

point source with a detection significance exceeding 10, independently in every energy bin, fixing the

spectra of these sources to their 4FGL default values.

We then fix the parameters of all sources in the background fit and add a new degree of freedom

corresponding to the Draco dSph, appropriately employing a morphological model computed using

Eq. (7.13) (and depicted in Fig. 7.15). Because the likelihood profile scans over the dark matter-

induced flux in each model, this stage of the analysis is sensitive only to the morphology of each

emission model and not to its overall normalization. We calculate the change in the likelihood of the

fit as the flux from this component increases from an initial value of 0 in each independent energy

bin. Using a spectral model based on the annihilation of dark matter particles of various masses

to bb̄ final states, we calculate the 2σ combined upper limit by determining the Draco flux which

worsens the log-likelihood of the fit by 2, compared to a model with no contribution from Draco.

Figure 7.16 shows the resulting limits on the total gamma-ray flux from Draco for several different

signal morphologies. More centrally concentrated signals are more strongly constrained, as illustrated

by the strength of the flux limit for annihilation within Draco’s smooth profile. Consequently, naively

applying a boost factor to account for the microhalos’ increased annihilation rate relative to a smooth

halo would produce constraints that are too strong by a factor of about 2. However, relative to

dark matter decay, the signal from microhalo-dominated annihilation in EMDE cosmologies is not

sufficiently morphologically altered to significantly change the flux limits.

We translate the flux upper limit into an upper bound on the dark matter cross section by

utilizing the expected net flux from Draco, which is obtained for each EMDE realization by

integrating Eq. (7.12) over Draco’s volume. In Fig. 7.17, we plot the resulting limits on the dark

matter annihilation cross section for EMDE scenarios with TRH = 10 MeV and TRH = 2 GeV. For

comparison, we also plot the constraints derived in Sec. 7.4 using the IGRB. We find that the limits

from Draco are comparable to the conservative limits from the IGRB, where all of the gamma-ray

flux is allowed to be attributed to dark matter, and are much weaker than the aggressive limits in

which astrophysical sources are modeled and subtracted from the IGRB. Evidently, for dark matter

annihilation within microhalos, Draco produces bounds that are at best comparable to those from

the IGRB. We remark, however, that an advantage to searching for microhalo annihilation within
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Figure 7.16: Impact of the signal morphology on the bounds derived from Fermi-LAT observations
on the energy flux from Draco in gamma rays above 100 MeV. We plot 2σ upper limits assuming
annihilation or decay into bb̄; different curves assume different flux profiles as shown in Figs. 7.14
and 7.15. For the EMDE-induced signals, we assume TRH = 2 GeV. Because it is so much less
centrally concentrated, the gamma-ray flux from dark matter decay is constrained less strongly than
the flux from annihilation within Draco’s smooth profile by roughly a factor of 2. Signals from
annihilation within microhalos in EMDE cosmologies are even less centrally concentrated than decay
signals due to the influence of tidal effects and stellar encounters, but this change in morphology is
too small to significantly further weaken constraints.

galactic systems is the potential to distinguish it from dark matter decay through the presence of

suppressive tidal effects. We leave an exploration of this possibility to future work. Another more

general advantage to dark matter detection in regions with known overdensities is that any positive

gamma-ray signal would be spatially correlated with that overdensity, making its attribution to dark

matter more convincing.

We also note that recent analyses, such as Refs. [492–494], have considered complex statistical

issues which may arise due to systematic errors in the background modeling. While more precise

treatments are possible, the systematic issues become most acute in three regimes: (1) when an

analysis includes a joint-likelihood treatment of many dSphs, most of which have an expected dark

matter content that falls far below the brightest few dSphs; (2) when a dwarf has a significant

positive (or negative) flux associated with it, which may also be due to background mismodeling;

and (3) when small changes in the constraint on the dark matter annihilation rate (at the order

of 10%) are highly relevant, such as in a comparison of standard annihilation constraints to dark

matter models of the Galactic center gamma-ray excess [495]. Our analysis of Draco does not fall

into any of these regimes, so we do not produce a detailed calculation of the expected cross section

constraints from multiple blank sky locations, an analysis which is computationally costly and would

182



10−1 101 103 105 107

mχ (GeV)

10−32

10−31

10−30

10−29

10−28

10−27

10−26

〈σ
v
〉(

cm
3

s−
1
)

k c
u
t
/k
R
H
=
20

k c
u
t
/k
R
H
=
40

unitarity

TRH = 10 MeV
Draco
IGRB (con.)
IGRB (agg.)

T
f
<

2
T
R
H

kdom<3kcut

to
o

m
uc

h
D

M

102 103 104 105 106 107 108

mχ (GeV)

10−32

10−31

10−30

10−29

10−28

10−27

10−26

〈σ
v
〉(

cm
3

s−
1
) kc

ut
/k

R
H
=
20

kc
ut
/k

R
H
=
40

unitarity

TRH = 2 GeV
Draco
IGRB (con.)
IGRB (agg.)

T
f
<

2
T
R
H kdom<3kcut

too
much
DM

Figure 7.17: Upper bounds on the cross section for dark matter annihilating into bb̄ for two
reheat temperatures TRH = 10 MeV (top) and TRH = 2 GeV (bottom), as derived from Fermi-
LAT observations of the Draco dSph. In each case, we consider both kcut/kRH = 20 (green) and
kcut/kRH = 40 (blue). In addition to the bounds from Draco, we also repeat from Fig. 7.9 the
conservative and aggressive bounds derived from the IGRB. We find that the Draco-derived limits are
comparable to the conservative limits from the IGRB and significantly weaker than the aggressive,
background-subtracted limits. The shaded region on the left is disallowed because it would overclose
the Universe, while the shaded region on the right marks where the dark matter’s coupling constant
exceeds unity. Constraints are tentative within the hatched regions because they fail Eq. (7.1)
or (7.2), which implies that the density fluctuation power spectra we employed do not apply therein.
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only mildly change our calculated limits.

7.6 Conclusion

In this work, we developed a procedure to constrain thermal-relic dark matter that freezes

out during or before an EMDE using existing indirect-detection probes. These scenarios reduce

the annihilation cross section required for dark matter to achieve the observed relic abundance,

but they also induce the formation of abundant dark matter microhalos, which can bring these

smaller cross sections into view. As demonstration, we considered EMDE cosmologies with reheat

temperatures TRH = 10 MeV and 2 GeV. By comparing the annihilation signals from predicted

microhalo populations to Fermi-LAT gamma-ray limits, we derived new constraints, shown in

Fig. 7.17, on thermal-relic dark matter in these cosmologies.

The principal challenge is to accurately model the microhalo population, and for that purpose we

employed the models presented in Chapters 4–6 along with several new refinements. These models

describe the formation of microhalos and their evolution within larger systems. Our refinements

include accounting for the reduced growth rate of the smallest-scale dark matter density variations,

modeling the combined impact of subhalo tidal evolution with stellar encounters, and accounting

for transient tidal effects that trace a subhalo’s orbital period. We also devised a convenient fitting

function to describe the aggregate tidal suppression of subhalo annihilation rates within a host.

These models allow precise tracking of the microhalo population through cosmic time with the caveat

that the impact of mergers between microhalos remains unclear. We employed an approximate model

based on the results of Chapter 4 and Ref. [339] to treat these mergers, and our results are subject

to this approximation’s accuracy. Further study is needed to precisely understand how mergers

influence a microhalo population.

We separately derived limits on dark matter annihilation in EMDE cosmologies using the IGRB

and the Draco dwarf, and we found that the IGRB produces stronger bounds. This result is

unsurprising since the signal from microhalo annihilation roughly follows the dark matter mass

distribution, so the sheer volume of the background outweighs the high density within dwarf galaxies.

The same property makes IGRB-derived bounds on the dark matter lifetime (e.g., Refs. [466, 467])

stronger than those derived from dSphs (e.g., Ref. [479]). We note, however, that galactic systems

can still be valuable in probing annihilation within microhalos because they can distinguish this

process from dark matter decay. The two produce morphologically similar signals, but microhalos
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within larger systems are subject to disruption by tidal effects and encounters with other objects,

suppressing the annihilation signal near these systems’ centers. We leave further investigation of

this possibility to future work.

The IGRB suffers significant astrophysical contamination, so the strength of our bounds depends

strongly on the degree to which astrophysical gamma-ray sources are modeled and subtracted. Using

the aggressive subtraction program in Ref. [467], we are able to probe cross sections as small as

10−32 cm3s−1 for dark matter annihilating into bb̄, although the strength of constraints depends

strongly on the dark matter mass, the reheat temperature, and the ratio kcut/kRH between the

free-streaming scale and the wave number entering the horizon at reheating. We explored only the

range 20 ≤ kcut/kRH ≤ 40, ratios plausible for certain supersymmetric dark matter candidates [225].

Larger values of kcut/kRH are also plausible and would be much more strongly constrained, but they

require accurately modeling halo formation during the radiation-dominated epoch (e.g., [206]), a

problem we leave to future work. Also, thermal relics with cross sections less than a few orders of

magnitude below the canonical 〈σv〉 = 3× 10−26 cm3s−1 tend to be only tentatively constrained;

the EMDE cosmologies needed to effect the observed dark matter abundance for these cross sections

result in density fluctuation spectra different from those we assumed. A more careful treatment is

necessary to constrain thermal-relic dark matter candidates with cross sections in this regime.

This work represents an important step toward the development of robust constraints on thermal-

relic dark matter that account for our ignorance of the Universe’s early thermal history. The

possibility of early matter domination prior to BBN vastly broadens the range of dark matter

properties that can produce the observed abundance, but we exploit the dark matter annihilation

boost induced by the microhalo populations that arise in these cosmologies to considerably narrow

the range of viable dark matter candidates. We close by noting that while our constraints assume

that dark matter is a thermal relic, the microhalo populations studied in this work could potentially

be probed gravitationally through pulsar timing arrays [25, 496] and searches for lensing distortions

in highly magnified stars [24]. In this way, these microhalos can prospectively be used to constrain

the early thermal history without assuming that dark matter has a thermal origin.
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CHAPTER 8:
CONCLUSION

The smallest dark matter halos present a promising arena in which to test three major cosmic

mysteries: what drove inflation, what happened after inflation, and what is dark matter? Potential

answers to these questions leave characteristic imprints in the power spectrum P(k) of density

variations, particularly at small scales, and these dark matter minihalos represent the most powerful

probe of subkiloparsec-scale density variations. However, this probe’s usage is hindered by the

dynamical complexity of these systems. Dark matter halos undergo deeply nonlinear dynamics,

the prediction of which demands numerical simulation. However, due to their small size and high

internal density, dark matter minihalos cannot be simulated in full cosmological context up to the

present day. This dissertation presented an answer to this challenge.

Chapter 2 established the density profiles of the first halos. I demonstrated that the ρ ∝ r−9/4

density profile assumed by many previous works does not arise from a natural formation scenario.

However, the first halos also do not develop the classic Navarro-Frenk-White profile, instead developing

density profiles that asymptote to ρ ∝ r−3/2 at small radii. Chapter 2 also developed a simple model

to predict minihalo density profiles based on their formation times, and I used this model to explore

how the new density profile assumption altered minihalo-derived bounds on the primordial power

spectrum. Surprisingly, I found that despite the reduced detectability of the new shallower density

profile, constraints were tightened. Works that assumed the ρ ∝ r−9/4 density profile considered

only the rare halos that form by redshift z = 1000, but since I found that all minihalos develop

the same density profiles, I was able to relax this requirement. The inclusion of all minihalos in

my analysis compensated the reduced detectability of the rare halos that form by z = 1000. This

promising result motivated further study of dark matter minihalos.

Certain well motivated cosmological scenarios, such as those predicted by a range of hidden-sector

theories, could induce even earlier halo formation. Chapter 3 explored the fate of regions so overdense

that they collapse before the redshift z = 3400, when radiation dominated. I found that while
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gravitationally bound structures cannot form where radiation dominates, localized regions can

become matter dominated solely through convergent particle drift. Within these regions, bound halos

can form long before radiation globally gives way to matter, and I used numerical simulations to

develop a formalism that can predict when this formation occurs. These halos would be so dense that

observations strongly limit their abundance, and Ref. [206] used this formalism to observationally

constrain a range of hidden-sector theories.

To enable more precise characterization of minihalo populations, Chapter 4 developed a general

predictive model that expanded on the specialized model presented in Chapter 2. Each minihalo can

be understood to form from a peak in the primordial density field, which is directly connected to the

power spectrum and hence to questions about the early Universe and the nature of dark matter.

My model predicts each halo’s properties from the properties of its precursor density peak. This

model is formulated in a direct way using physically motivated models and scaling arguments, with

a minimum of simulation-tuned parameters. Consequently, it is accurate across wildly disparate

cosmological scenarios, making it a powerful tool for establishing the minihalo-cosmology connection.

The aforementioned model accurately describes the properties of first-generation halos that

remain isolated. However, after formation, many minihalos merge with other objects to produce

larger structures. Chapter 5 developed a model that predicts how minihalos evolve as subhalos

inside the much larger halos that arose more recently. The structures of these subhalos are gradually

reshaped by their host halo’s tidal forces. My model predicts this evolution in terms of three physically

motivated parameters of the host-subhalo system: the energy injected into subhalo particles per

orbit about the host, the ratio of stretching to compressive tidal forces, and the radial distribution

of tidal heating within the subhalo. Thanks to this novel parametrization, it predicts tidal evolution

for subhalos on arbitrary orbits with an accuracy unparalleled by previous treatments.

Within galactic halos, sufficiently small minihalos can also be affected by encounters with

individual stars. Chapter 6 developed a model that predicts how minihalos evolve in response to

stellar encounters. This model is formulated solely in terms of the energy injected by the encounter

into halo particles. I found that the postencounter density profile follows a universal form, making it

a simple matter to treat the impact of arbitrarily many successive stellar encounters. My model

accurately predicts the evolution of minihalos crossing whole fields of stars.

Finally, Chapter 7 applied these models to a problem concerning both the early Universe and
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the identity of dark matter. If thermal-relic dark matter’s cosmological production concluded when

radiation dominated, the dark matter annihilation cross section is fixed at the canonical value

〈σv〉 = 3 × 10−26 cm3s−1 by the requirement that dark matter achieve the observed abundance.

Indirect-detection experiments have begun to test this cross section. However, the possibility of an

early matter-dominated era vastly broadens the range of viable dark matter candidates by bringing

thermal relics with smaller annihilation cross sections down to the observed abundance. Fortunately,

early matter domination also boosts density variations at small scales, a change that raises the internal

density of the smallest halos and thereby boosts the dark matter annihilation rate dramatically.

Chapter 7 explores the extent to which this halo population brings these dark matter candidates

back into the view of indirect-detection searches. I applied the models described in Chapters 4–6

to characterize the minihalo populations that arise from various EMDE scenarios and used these

characterizations to predict the observational signatures from dark matter annihilation in these

cosmologies. For plausible dark matter parameters, these minihalo populations allow cross sections

as small as 10−32 cm3s−1 to be constrained by the Fermi Gamma-ray Space Telescope’s measurement

of the isotropic gamma-ray background. Chapter 7 also explored the peculiar annihilation signal

morphologies that arise from minihalos inside galactic systems, focusing on the Draco dSph in

particular. In these environments, annihilation rates within minihalos are altered by their evolution

due to tidal forces and encounters with other objects. While Draco yields weaker cross-section

constraints than the isotropic background, the signal morphology from such a system could potentially

distinguish the signal associated with an EMDE from that caused by dark matter decay, an otherwise

unrelated prospective phenomenon.

By advancing our understanding of the formation and evolution of dark matter minihalos, this

dissertation developed an observational window into dark matter and the early Universe. I developed

models that treat the formation of the first halos and their evolution as they accrete onto larger

structures. The principal remaining problem is to understand the impact of mergers between

minihalos, the process by which larger structures are assembled. Chapter 7 presented an approximate

treatment, but further work is needed to precisely understand the outcome of mergers between halos

of comparable mass.
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APPENDIX A:
TECHNICAL DETAILS ON SIMULATIONS OF ULTRACOMPACT
MINIHALOS AND CONSTRAINING THE PRIMORDIAL POWER

SPECTRUM1

A.1 Simulations prior to the matter-dominated era

For our numerical experiments, we employ a modified version of Gadget-2 that includes a

smooth radiation component, and we begin the simulations long before matter-radiation equality.

The simulation starting redshift of z = 8× 106 is necessary so that our enhanced fluctuations are still

in the linear regime with amplitude δ . 0.1. However, the assignment of initial particle velocities

is more complicated in this picture than during matter domination, and we use the Zel’dovich

approximation to compute them in the following way.

We begin with the density contrast field δ(q) as a function of the comoving grid coordinate q. We

wish to convert this description into a comoving position field x(q) and velocity field ẋ(q) treating

q as a Lagrangian coordinate assigned to each particle. The position calculation proceeds by writing

x(q) = q + s(q), (A.1)

where the displacement vector s is related to δ at linear order by ∇ · s = −δ. If we assume s is

irrotational, then s ∝ ∇δ, and the Fourier-transformed quantities are related by

s(k) =
ik

k2
δ(k). (A.2)

Equations (A.1) and (A.2) determine the initial positions and are valid regardless of the composition

of the Universe.

We next turn to the velocity field ẋ(q) or its Fourier transform ẋ(k) = ṡ(k). Let t0 be the time

at which we are generating initial conditions, and write s as a function of time, using a new function

1This appendix accompanied an article that was previously published in Physical Review D, and it is copyright c©
2018 American Physical Society. The original reference is as follows: M. S. Delos, A. L. Erickcek, A. P. Bailey, and M.
A. Alvarez, Density profiles of ultracompact minihalos: Implications for constraining the primordial power spectrum,
Physical Review D 98, 063527 (2018).
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D(k, t) to encode its time dependence:

s(k, t) = D(k, t)s(k). (A.3)

We define s(k) ≡ s(k, t0) so that D(k, t0) ≡ 1. During matter domination, D(k, t) = a(t)/a(t0)

independent of k, but radiation complicates the picture. However, it is evident from Eq. (A.2) that

s and δ evolve identically in time, implying D(k, t) = δ(k, t)/δ(k, t0). The initial velocity becomes

ẋ(k, t0) =
δ̇(k, t0)

δ(k, t0)
s(k) =

d ln δ(k, t)

dt

∣∣∣∣
t=t0

s(k), (A.4)

which is evaluated using Eq. (2.3) with d/dt ≡ aH(a)d/da.

To test the modified simulation code and initial conditions, we compare simulation results to

linear theory. We produce a matter power spectrum at z = 8× 106 using the procedure described in

Sec. 2.2.2, but we leave it unenhanced so that density contrasts near matter-radiation equality are

well in the linear regime. We draw initial conditions from this power spectrum in a (7.4 kpc)3 periodic

box and then evolve this box to z = 996 using our modified version of Gadget-22. All simulation

parameters are the same as those of the reference simulation described in Appendix A.2. Figure A.1

shows the growth of the power spectrum during this simulation. It matches the linear-theory

prediction of Eq. (2.3), including the scale-dependent growth. Note that without the radiation

component, the power spectrum would have instead grown by a factor of about 6× 107.

As another demonstration, we also evolve the initial density field to z = 996 using linear theory

by applying the evolution specified by Eq. (2.3) to the Fourier-transformed density field; we may

then compare the resulting density field to the one evolved using Gadget-2. In Fig. A.2, we plot a

slice of the density field at z = 996 evolved using both methods. Our modified version of Gadget-2

with initial conditions described above successfully reproduces the results of linear theory.

2The fluctuations drawn from an unenhanced power spectrum have amplitude δ ∼ 10−3 at z = 8×106, which results in
extremely small particle accelerations. To evade errors resulting from floating-point precision, we also set Gadget-2
to use double-precision arithmetic. All simulations in this work employ this setting.
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Figure A.1: The power spectrum growth from z = 8 × 106 to z = 996: a comparison between
Gadget-2 with an added radiation component and linear theory. In matter domination, the power
spectrum would have instead grown by a factor of about 6× 107.

Figure A.2: Fractional overdensity fields evolved to z = 996 from the same initial box at z = 8× 106.
The figure depicts a (7.4 kpc)2 × 1.5kpc slice. The left and right panels show the results of linear
theory and modified Gadget-2 respectively.

A.2 Convergence testing and simulation parameters

A.2.1 Simulation parameters

We carry out a reference simulation run and five convergence-testing runs: one with improved

force accuracy, one with improved integration accuracy, two with respectively increased and reduced

softening scales, and one with higher particle count. Our parameter choices for these runs are

summarized in Table A.1 and described below. We refer the reader to Ref. [274] for further detail on

these parameters.

Particle count N In our reference run, we use N = 5123 particles arranged in a 3-dimensional

grid. In the high-particle-count run, we increase this to N = 10243. At the final redshift, the UCMH

in the reference run has 2.7× 105 particles within its virial radius rvir while the UCMH in the
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Table A.1: Simulation parameters for convergence runs. See the text for descriptions of the symbols.
label N Nmesh

N rs rcut α η dtmax
ε

∆r

reference 5123 1 1.25 4.5 0.005 0.025 0.03 0.03
force acc. 5123 23 2.5 9.0 0.002 0.025 0.03 0.03
integration 5123 1 1.25 4.5 0.005 0.01 0.01 0.03
softening ×2 5123 1 1.25 4.5 0.005 0.025 0.03 0.06
softening ×1

3 5123 1 1.25 4.5 0.005 0.025 0.03 0.01
N ×8 10243 1 1.25 4.5 0.005 0.025 0.03 0.03

high-particle-count run has 2.2× 106 particles.

Particle mesh size Nmesh This parameter describes the size of the particle mesh used for the

long-range force calculation. In our reference run, we set Nmesh = N . In the force-accuracy run, we

set Nmesh = 23N to increase the accuracy of the long-range force calculation.

Short/long-range split rs Gadget-2 computes the long-range force using a particle mesh and

the short-range force using an octree. The parameter rs determines the splitting scale in units of

mesh cells. In our reference run, we set rs = 1.25 mesh cells. In the force-accuracy run, we increase

this to rs = 2.5 mesh cells, which effectively leaves the splitting scale unchanged since we also double

the mesh frequency.

Short-range cutoff rcut The short-range force calculation (using an octree) is cut off beyond rcut

mesh cells. In our reference run, we set rcut = 4.5 mesh cells. In the force-accuracy run, we increase

this to rcut = 9.0 mesh cells, which similarly leaves the cutoff scale unchanged since we also double

the mesh frequency.

Tree-force error parameter α Gadget-2’s short-range (octree) force calculation only opens

a tree node if the estimated force error from truncating it is less than α times the estimated total

force. In our reference run, we set α = 0.005. In the force-accuracy run, we set α = 0.002 to increase

the accuracy of the short-range force.

Adaptive time step parameter η Gadget-2 uses individual adaptive time steps with an

accuracy parameter η. Roughly, the time step is set so that the maximum displacement due to a

particle’s acceleration over one time step is smaller than η times the force-softening scale. In the

reference run, we set η = 0.025, while in the integration-accuracy run, we set η = 0.01 to reduce the

particle time steps.
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Maximum time step dtmax In order to avoid large integration errors at early redshifts when

accelerations are small, Gadget-2 imposes a maximum particle time step dtmax, which is expressed

in units of the Hubble time (so it is actually d ln a). In the reference run, we set dtmax = 0.03, while

in the integration-accuracy run, we set dtmax = 0.01 to improve the integration accuracy at early

times.

Force softening scale ε Gadget-2 softens the gravitational force based on the length parameter

ε, which we set to be a fraction ε/∆r of the initial interparticle spacing ∆r ≡ box size/N1/3. Note

that the force becomes fully Newtonian at 2.8ε; ε itself is defined to be the minimum radius that can

appear in the point-particle potential. In the reference run, we set ε/∆r = 0.03. Larger softening

lengths can minimize discreteness artifacts, but they also systematically bias the forces and prevent

smaller scales from being resolved. We perform two runs with altered softening: one with a larger

softening scale ε/∆r = 0.06 and one with a smaller softening scale ε/∆r = 0.01.

A.2.2 Procedure, results, and discussion

We conduct convergence testing on the primary simulation run of Sec. 2.3. The density field

is generated with 10243 cells but reduced to 5123 cells for all but the high-particle-count run by

averaging 8 neighboring cells. Each convergence run is carried out as in Sec. 2.3 with only the

simulation accuracy parameters changed. We study here the spherically averaged density profile ρ(r)

of the UCMH at z = 100.

We find that the density profile at each radius rapidly fluctuates between closely-spaced snapshots,

and that these fluctuations differ between simulation runs with different parameters. Moreover, we

will see later that these fluctuations are a discreteness artifact (although they are not merely the

Poisson noise in each radial bin, which is much smaller), so we wish to ignore them. To do so, we

obtain density profiles in 16 snapshots between z = 100 and z = 99 and average them. We also

compute the root-mean-squared variance between the snapshots as an estimate of the magnitude

of this time variation. Such a small time range was chosen so that we only smooth over rapid

fluctuations and not over significant global evolution (such as growth). Nevertheless, this time is

short enough that it fails to average over fluctuations at large radii where the particle motion is much

slower. We may estimate the upper limit of the range over which rapid fluctuations are smoothed as

the radius rlim where

σr(rlim)∆t = rlim, (A.5)
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Figure A.3: Radial density profiles averaged between z = 100 and z = 99; the shading indicates the
root-mean-squared variance over this interval. Clockwise from top left: force-accuracy, integration-
accuracy, softening-length, and particle-resolution convergence comparisons. The vertical solid
(dotted) lines indicate 2.8ε for the reference run (alternate runs), the range beyond which forces are
exactly Newtonian. The dot-dashed line indicates rlim, the radius beyond which fluctuations are
likely not averaged (see text for details). (ρ̄ is the background matter density.)

where σr(rlim) is the radial velocity dispersion at radius rlim and ∆t is the time difference between

z = 100 and z = 99. rlim is thus the radius at which particles are moving fast enough that their radial

distance traveled over the averaging period is of the same order as their radial position. For r < rlim,

there can be no significant correlation between the positions of a particle at the beginning and at

the end of the averaging period, so we expect to have averaged over these discreteness artifacts.

There is also an obvious lower limit to the range of radii over which we expect our results to be

representative, and that is where the radius is equal to 2.8ε, where ε is the gravitational softening

length. Below this radius, all forces are non-Newtonian, and the density profile will unphysically

flatten out.

Our main results are shown in Fig. A.3. The dotted lines indicate the density profile of the

reference simulation run, with the gray shading representing the root-mean-squared variance in

snapshots between z = 100 and z = 99. The solid lines with colored shading depict alternate runs.
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Force accuracy In the force-accuracy run, we reduce the tree-force error parameter α to increase

the accuracy of the short-range force and simultaneously double the resolution of the particle mesh

in order to increase the accuracy of the long-range force. We change the short/long range splitting

parameters rs and rcut only to keep the short/long range split the same, since those parameters

are expressed in mesh cells. The result is shown in Fig. A.3. We see that for r < rlim, the density

profile of the force-accuracy run matches well that of the reference run, suggesting that the reference

force-accuracy parameters were sufficient.

Integration accuracy In the integration-accuracy run, we reduce the integration time step in

order to reduce error from the numerical integration of particle trajectories. Specifically, we reduce

the adaptive time step parameter η as well as the maximum time step dtmax. The first change should

improve integration accuracy at late times when particles are experiencing large accelerations, and the

second should improve integration accuracy at early times when accelerations are small. The result

is shown in Fig. A.3. We see that for 2.8ε < r < rlim, the density profile of the integration-accuracy

run matches that of the reference run, indicating that the reference integration-accuracy parameters

were sufficient.

Force softening The gravitational force softening length ε is a more difficult parameter to tune

[461, 497–501]. Forces are softened at short range to account for the way the numerical simulation

uses discrete particles to represent a continuous mass distribution. Thus, a larger ε reduces the

influence of discreteness artifacts such as two-body collisions. On the other hand, a larger ε also

introduces a bias due to the forces being weaker than Newtonian, and a smaller ε can allow smaller

scales to be probed. Unlike the other parameters we consider, there is no clear direction of greater

accuracy in ε. Ref. [499] suggests a minimum softening length εacc ≡ rvir/
√
Nvir (Nvir is the number

of particles in the halo virial radius), which follows from the criterion that the maximum two-body

acceleration caused by a close approach be smaller than the minimum mean-field acceleration within

the system. We adopt the choice ε = 0.03∆r, where ∆r is the initial interparticle spacing, in our

reference run, which results in ε ' 2.3εacc at z = 100. We also execute two other simulation runs

with ε at respectively a third and twice the reference value.

The results are shown in the bottom right of Fig. A.3. The vertical solid line represents 2.8ε

for the reference run, while the two vertical dotted lines represent 2.8ε for the runs with altered

softening. As one would expect, the density profile for each run flattens out for r < 2.8ε. We hope
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Figure A.4: The softening-length convergence test with ρ and r rescaled for each run to its Moore
fitting parameters. The thick dashed line shows the fit, which is the same for all runs by construction.
(Shading and vertical lines have the same meaning as in Fig. A.3.)

to find convergence for 2.8ε < r < rlim (recalling that each run has a different ε), but while the

density profiles in these ranges are close, there is a systematic flattening as ε becomes larger. What

has happened here may be elucidated by performing a Moore fit [Eq (2.4)] to each run and rescaling

ρ and r to the fitting parameters ρs and rs. The rescaled plot is shown in Fig. A.4. Evidently,

each run can still be fit by the same form in the range 2.8ε < r < rlim but has a different Moore

concentration parameter c ≡ rvir/rs: the reference run has c = 9.6, the reduced softening run has

c = 10.2, and the increased softening run has c = 9.2. This discrepancy is likely the result of a force

bias: the softening is causing a slight enlargement of the system. Fortunately, the effect is small. If

we assume that either rs or c is a linear function of ε, then with a purely Newtonian force, we would

have c ' 10.4, corresponding to an 8% reduction in rs relative to the reference simulation. Moreover,

the softening length does not affect the major conclusion regarding the shape of the density profile:

all runs fit the Moore form well for r > 2.8ε.

Particle count We use 5123 = 1.3 × 108 particles in the reference run, which places 2.7 × 105

particles within the virial radius of the UCMH at z = 100. To avoid strong discreteness effects, we

must use enough particles that two-body collisions have negligible impact. To estimate this, we

consider the two-body relaxation timescale trelax, the timescale over which two-body encounters

significantly alter a particle’s energy. For a region of radius r about the halo center containing N

simulation particles with total mass M , trelax = N/(8 lnN)tcross (e.g. [392]) with tcross ' r/
√
GM/r.

The relaxation timescale should be much longer than the dynamical age of the halo, which is
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Figure A.5: Root-mean-squared variance in the density profile across 16 snapshots between z = 100
and z = 99. The reference and high-particle-count runs are compared. (Vertical lines have the same
meaning as in Fig. A.3.)

essentially the age of the Universe at z = 100. We calculate trelax for the UCMH in the reference

simulation and find that even at the smallest relevant radius, r = 2.8ε, trelax is 100 times the age of

the Universe at z = 100. This calculation suggests that the reference simulation contains enough

particles that collisional artifacts are unimportant.

Nevertheless, Fig. A.3 shows a comparison between the density profiles in the reference run

and in a simulation run with 8 times as many particles. As expected, the two density profiles

match well in the range 2.8ε < r < rlim, implying that the simulation is converged with respect to

particle count in these regions. Moreover, the time-fluctuations in the density profile, measured as

the root-mean-squared variance across snapshots between z = 100 and z = 99, are smaller in the

high-particle-count simulation than in the reference simulation, a fact that we confirm in Fig. A.5.

This observation confirms our claim that the fluctuations are a discreteness artifact.

These fluctuations may be related to the artificial fragmentation of filaments that occurs in

simulations with a small-scale cutoff in the power spectrum [389, 390]. We observe artificial

fragmentation in our simulations using the spiked power spectrum, as evidenced in Fig. A.6, which

shows one of the filaments connected to the UCMH for different simulation parameters. Like the

density fluctuations, the frequency and size of these fragments is correlated with the simulation

particle resolution, while their positions vary with force-accuracy parameters. The fluctuations in

the density profile could be caused by the accretion of artificial fragments.
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Figure A.6: The filament to the left of the UCMH (see Fig. 2.4) for different simulation parameters.
This figure demonstrates the presence of artificial fragmentation: the filament fragments differently
for different parameters.

A.2.3 The smallest resolved radius

We have shown that the density profile of the UCMH in the reference version of the primary

simulation run is converged with respect to simulation parameters at z = 100 for radii r between

2.8ε = 0.012rvir and rlim = 0.11rvir. This halo has rvir = 1.0× 10−3 kpc (in physical coordinates) at

z = 100, so the converged radius range is 1.2× 10−5 kpc < r < 1.1× 10−4 kpc. Moreover, we can

regard the density profile above rlim = 1.1× 10−4 kpc as converged in its long-range behavior, with

only the small-scale fluctuations being not converged. Unfortunately, the lower limit of 1.2× 10−5 kpc

imposed by the force softening is not sufficient to capture the asymptotic behavior in ρ(r) at small r

(see Fig. 2.5).

We can double the resolution by employing the high-particle-count simulation run, but we would

like to go still deeper into the halo. While it is computationally challenging to simulate the full box

with more than 10243 particles, it is also unnecessary. A common practice in N-body simulations is

to resample the halo progenitor at higher particle resolution and embed this high-resolution region

into the same periodic box. Because the halos we consider are much more isolated than halos in a

hierarchical growth picture, we need not even go this far: we can simply isolate a sphere around the

halo progenitor and use vacuum boundary conditions. Figure A.7 shows the comparison between

the periodic box with 10243 particles and an otherwise identical simulation of a vacuum-bounded
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Figure A.7: A comparison between the UCMH simulated in a (7.4 kpc)3 periodic box with a halo
from the same initial overdense region simulated in a sphere of radius 0.92 kpc with vacuum boundary
conditions. (Vertical lines have the same meaning as in Fig. A.3.)

sphere of radius 0.92 kpc around the UCMH. The spherical region is depicted in Fig. 2.2. The sphere

requires only 1/122 as many particles for an identical result. We therefore exploit this method to

simulate the UCMH in the primary simulation at 64× particle density and the other UCMHs at 8×

particle density relative to the reference simulation with 5123 particles.

However, this concordance does not hold at z = 50, nor is it guaranteed to hold at z = 100

in other boxes. The longer the simulation run, the more likely the UCMH is to be influenced by

structure that originated outside of the sphere. Therefore, we restrict our use of the vacuum-bounded

sphere to the primary simulation box (which we tested here) up to z = 100 and to other initial boxes

up to z = 400. For the UCMH in the primary simulation box, this brings the smallest resolved

radius down to 3.0× 10−6 kpc (physical coordinates) at z = 100, which is sufficient to resolve the

beginning of the ρ ∝ r−3/2 asymptote. This radius contains 3× 104 particles at z = 100.

Due to the stability of the density profile in time, we can probe still smaller radii by viewing

the density profile at earlier times, as discussed in Section 2.3. By this method, we probe radii as

small as 9.0× 10−7 kpc in Fig. 2.5 using the density profile at z = 400. This radius contains 4000

particles at z = 400 and is sufficient to demonstrate that the density profile shows no sign of leveling

off toward a shallower power-law index than 3/2.

A.2.4 Summary of simulation choices

We now summarize the simulation parameters we use to study the UCMHs in Sec. 2.3. Aside

from the particle count N , all simulation runs use the reference parameters of Table A.1. We
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Table A.2: The particle count N , particle mass m, simulation region size (side length or diameter),
and ending redshift for each simulation used to produce the results in Sec. 2.3. The π/6 factor in
the particle count comes from isolating a spherical region.

description N m (M�) size (kpc) region end z

primary 10243 1.5× 10−5 7.4 periodic 100
primary, z = 50 5123 1.2× 10−4 7.4 periodic 50

primary, vacuum b.c. π/6× 5123 1.8× 10−6 1.85 sphere 100
secondary 5123 1.2× 10−4 7.4 periodic 50

secondary, vacuum b.c. π/6× 2563 1.5× 10−5 1.85 sphere 400
step 5123 1.2× 10−4 7.4 periodic 100

Table A.3: For each simulation used to produce the results in Sec. 2.3, this table lists the number of
particles Nvir within the UCMH at each redshift from which results are presented. For the secondary
simulations, an average figure is given.

description Nvir|z=400 Nvir|z=200 Nvir|z=100 Nvir|z=50

primary 549 103 1 252 010 2 242 797 ...
primary, z = 50 ... ... ... 431 978

primary, vacuum b.c. 4 551 792 10 679 480 18 572 202 ...
secondary 71 108.3 169 121.5 284 310.9 423 624.5

secondary, vacuum b.c. 583 019.9 ... ... ...
step ... ... 11 631 568 ...

employ two classes of simulation region: a comoving cube with periodic boundary conditions or an

isolated comoving sphere with vacuum boundary conditions. Table A.2 shows the particle counts

and simulation region sizes for all simulation runs. The mass m of the simulation particle is also

shown for clarity.

The primary simulation box is the same 7.4 kpc box we used for convergence testing. The full

box is simulated at 8 times the reference particle density (10243 particles) and a sphere around the

main halo at 64 times the reference particle density up to z = 100, and a third run simulates the full

box at reference particle density up to z = 50. The density profile of the UCMH shown in Fig. 2.5

comes from the isolated sphere at 64× reference particle density up to z = 100 and from the full box

at reference density at z = 50. Secondary simulations (Fig. 2.6) are executed at reference particle

density up to z = 50 and at 8× reference density in an isolated sphere up to z = 400. The Nvir

figures for the secondary simulations in Table A.2 are average values and vary by up to 25% between

simulations of different UCMHs. The density profiles of younger halos (Sec. 2.3.4) come from the

full primary box at 8× reference density at z = 100. Finally, for the stepped power spectrum, we
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simulated a full box with reference parameters to z = 100.

All density profiles are averaged over 16 snapshots within 1/100 of a Hubble time to suppress

fluctuations. Density profiles are binned logarithmically in intervals separated by a factor of 1.1

(corresponding to an interval of 0.041 in log10 r), but we have checked that the results depend

negligibly on this choice.

A.3 Constraining point-source abundance in the Milky Way

In Sec. 2.5, we defined µ(d) = 3M(d)/(4πd3ρ̄0), where M(d) is the dark matter mass contained

within distance d of Earth. If we are at distance r0 from the Milky Way center, then we may write

µ(d) =
3

2d3ρ̄0

∫ d

0
s2ds

∫ 1

−1
dx max

{
ρMW

(√
s2 + r2

0 − 2xsr0

)
, ρ̄0

}
, (A.6)

with ρMW(r) being the density profile of the Milky Way. This expression approximates the extra-

galactic density field as a uniform background. Taking the Milky Way to have an NFW profile with

scale radius rS and scale density ρS and the sun to be at distance r0 from the center, the integral in

Eq. (A.6) evaluates to

µ(d) ' 3r3
SρS

2r0ρ̄0d3





(r0 + rs) ln
(
r0+rS+d
r0+rS−d

)
− 2d d < r0

2rSarctanh
(

r0
d+rS

)
+ r0 ln

(
(d+rS)2−r2

0

e2r2
S

)
r0 < d < rmax

2r0

[
−rmax
rmax+rS

+ ln
(

1 + rmax
rS

)
+ ρ̄0

3r3
SρS

(d3 − r3
max)

]
d > rmax

(A.7)

where rmax is defined such that ρMW(rmax) = ρ̄0. The first two cases in Eq. (A.7) come from an

exact evaluation of the integral in Eq. (A.6) for the Milky Way without a background, while the

third case approximates r0 ' 0 to evaluate the extragalactic contribution. Figure 2.12 shows a plot

of µ(d).

A.4 Constraining the power spectrum using the statistics of peaks

In Sec. 2.5, we used the statistics of peaks as formulated in Ref. [269] (BBKS) to relate the

differential halo number density by formation time, dn/dac, to the power spectrum P(k). We

describe that calculation in more detail here. The differential number density of peaks according

to their height ν = δ/σ and steepness parameter x is given in BBKS Eq. (A14), where σ is the
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root-mean-squared density variance3 and δ is the peak density contrast. For the spiked power

spectrum given by Eq. (2.22), σ = A1/2a. Moreover, the spectral parameter γ [BBKS Eq. (4.6)]

has value γ = 1, causing the x-exponential in BBKS Eq. (A14) to become a delta-function. We

obtain the halo abundance by integrating this differential number density over x and ν subject to

the collapse requirement νσ > δc, with result

n =
k3
s

(2π)233/2

∫ ∞

δc/(A1/2a)
e−ν

2/2f(ν)dν (A.8)

where the function f(ν) is defined by BBKS Eq. (A15).

We seek dn/da, which is obtained by differentiation as

dn

da
=
k3
s

a
h

(
δc

A1/2a

)
(A.9)

with

h(ν) ≡ ν

(2π)233/2
e−ν

2/2f(ν). (A.10)

As we noted in Sec. 2.5.3, the number density n increases monotonically due to halo formation

alone. Thus, Eq. (A.9) gives us precisely dn/dac, which we can combine with Eq. (2.17) or (2.20) to

constrain the integrated area A of the power spectrum.

For the general case of point sources with nonconstant µ(d), we have little choice but to numerically

invert the integral in Eq. (2.17) to obtain an upper bound on A as a function of ks. However, in a

limiting case where µ is constant, or to derive a bound from the diffuse flux, we can fully extract the

A-dependence from the integral. In these cases, we have an integral of the form

∫ 1

0
dac

dn

dac
Lp(ac) = k3

s

∫ ∞

0

dν

ν
h(ν)Lp

(
δc

νA1/2

)

=
ApA3p/2

δ3p
c k

3p−3
s

∫ ∞

0
h(ν)ν3p−1

(
ln

Bδc

νA1/2

)p
dν

=
ApA3p/2

δ3p
c k

3p−3
s

[(
ln
Bδc

A1/2

)p
Ip −

(
ln
Bδc

A1/2

)p−1

Jp

]
, (A.11)

3There is no smoothing filter, so σ is the pointwise variance, σ2 =
∫

dk
k
P(k).
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Figure A.8: Plots of the function h defined in Eq. (A.10) along with the integrands in Eq. (A.12).
Each function is scaled to its maximum value to emphasize the support of these functions. The black
curves are relevant to point-source constraints, while the red curves determine diffuse constraints.
This figure shows that constraints are set primarily by peaks between 2σ and 4σ.

with p = 3/2 or p = 1 for point sources or the diffuse flux respectively, and where Ip and Jp are

defined as

Ip ≡
∫ ∞

0
h(ν)ν3p−1dν, Jp ≡ p

∫ ∞

0
h(ν)ν3p−1 ln ν dν. (A.12)

In the first line, we use Eq. (A.9) with ν = δc/(A1/2a). We saw in Sec. 2.5.4 that the integral in

Eq. (A.11) is dominated by minihalos forming at z & 20, so we exploit the negligible contribution to

this integral of minihalos forming at a > 1 to extend the lower limit of the integral on the right-hand

side to ν = 0. In the second line, we specialize to the Moore density profile using Eq. (2.13). In

the last line, we take advantage of the limited support of h(ν) to claim that ln ν � ln
(
Bδc/A1/2

)

so that we can use a binomial expansion (and this is exact for p = 1). Note that the integrands in

Eq. (A.12) tell us the range of peaks that are relevant to constraints: as we see in Fig. A.8, most of

their support lies in peaks between roughly 2σ and 4σ.

For point sources with µ ' const, we now have

A
(

ln
Bδc

A1/2

)2/9 [(
ln
Bδc

A1/2

)
I3/2 − J3/2

]4/9

≤
(
−3
√

4π ln(1− y/x)

µ

)4/9(
δ3
cksFmin

A

)2/3

, (2.25)

while for diffuse sources, we have

A
[(

ln
Bδc

A1/2

)
I1 − J1

]2/3

≤
(

4πδ3
c

K(θ)A

dF
dΩ

)2/3

. (2.26)
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These expressions follow from Eqs. (2.17), (2.20), and (A.11). The numbers I3/2, J3/2, I1, and J1

have approximate values

I3/2 = 0.228, J3/2 = 0.370, I1 = 0.0477, J1 = 0.0478 (A.13)

Equations (2.25) and (2.26) are now algebraic equations for the upper bounds on A.

The constraint on A is not our final goal, but it is close. Aa2 is the power associated with the

spike in the (linear) matter power spectrum during matter domination. We seek instead the power

A0 associated with the spike in the primordial curvature power spectrum. These quantities are

related by a transfer function such as [502]

δ(k, a) =
2

5

k2

ΩmH2
0

ζ(k) T
(√

Ωrk

H0Ωm

)
a, (A.14)

which relates the matter density contrast δ during matter domination to the primordial curvature

fluctuation ζ. Here

T (x) =
45

2x2

(
−7

2
+ γE + ln

(
4x√

3

))
(A.15)

is a dimensionless transfer function that is valid at x � 1 or k � 10−2Mpc−1 (γE ' 0.577 is the

Euler-Mascheroni constant). Hence, by squaring Eq. (A.14),

A0 =
(Ωr/Ωm)2A

81
[
−7

2 + γE + ln
(

4
√

Ωrks√
3H0Ωm

)]2 (A.16)

yields the desired constraint on the primordial power spectrum.

A.5 The UCMH constraint on a spiked power spectrum

Bringmann, Scott, and Akrami [234] (BSA) calculated an upper bound on the number density of

UCMHs (as a function of scale wavenumber k) using the ρ ∝ r−9/4 density profile from Ref. [202].

They then converted this constraint into an upper bound on the primordial power spectrum under

the assumption of local scale invariance. We followed the calculation in BSA as closely as possible in

Sec. 2.5 so as to facilitate a direct comparison in constraining strength between our new minihalo

model and the old UCMH model. However, because a spiked power spectrum does not exhibit local

scale invariance, we must return to the UCMH abundance constraint in BSA and convert it into a
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constraint on the delta-spiked power spectrum given by Eq. (2.22). We show that calculation here.

BSA Fig. 1 shows their constraint on the fraction f of matter contained in UCMHs. This fraction

is readily converted into a number density n = fρm/MUCMH, where BSA took

MUCMH = 4× 1013

(
k

Mpc−1

)−3

M�. (A.17)

Here we have employed R = 1/k, where R is the comoving radius of the precursor overdense region;

this is the same relation BSA used. The UCMHs are taken to follow the dark matter distribution,

so n and ρm are the comoving background UCMH number density and matter density respectively.

This procedure has given us a constraint n on the comoving number density of halos of scale

wavenumber k forming at z & 1000. In the delta-spiked power spectrum given by Eq. (2.22), all

halos form from fluctuations with wavenumber ks, the wavenumber of the spike, so we will take

k = ks in Eq. (A.17). We can then use Eq. (A.8) with a = 10−3 to convert this upper bound on

the abundance of halos that form at z ≥ 1000 into a constraint on the primordial power spectrum,

which is shown in Fig. 2.13.

205



APPENDIX B:
THE COLLAPSE THRESHOLD δc DURING RADIATION DOMINATION1

When radiation dominates, the linear collapse threshold δc is larger than its value δc,0 ≡ 1.686

during matter domination. In this appendix, we study the the behavior of δc by varying the initial

conditions in the calculation of Sec. 3.2. This behavior is shown in Fig. B.1: it is a function of both

the collapse scale factor ac and the reheat temperature TRH.

We now present a convenient fitting form for δc. To begin, we define aRH as the scale factor

corresponding to the temperature TRH assuming radiation domination. Taking a = 1 today, this

definition implies that

aRH =

(
3.91

g∗(TRH)

)1/3 T0

TRH
. (B.1)

where T0 = 2.3× 10−4 eV is the temperature today and g∗ is the effective number of relativistic

degrees of freedom in the Standard Model (as a function of temperature). Note that this definition

differs from other definitions of aRH in the literature, and we only use it as a parameter for our fitting

form. We also employ aeq = Ωr/Ωm, the scale factor of matter-radiation equality. The following

fitting form for δc is accurate to within 0.004 for 2 MeV < TRH < 1 TeV as long as ac . 0.1 (dark

energy is neglected) and ac � T0/Tdom (radiation prior to the EMDE is neglected):

δc = δc,0 + f

(
ac
aRH

)
g

(
ac
aeq

, ln
aRH

aeq

)
− h
(

ln
ac
aeq

)
. (B.2)

Here, the function f(x) is defined

f(x) = A
ln(1 + x)− x+Bx2+Cx3

1+Dx+Ex2+Fx3

1 +G(ln(1 + x)− 2x/(2 + x))
,

A = 0.3549, B = −0.2331, C = 0.0533, D = 0.4935,

E = −0.2092, F = 0.09327, G = 0.2683,

(B.3)

1This appendix accompanied an article that was previously published in Physical Review D, and it is copyright c©
2019 American Physical Society. The original reference is as follows: C. Blanco, M. S. Delos, A. L. Erickcek, and D.
Hooper, Annihilation signatures of hidden sector dark matter within early-forming microhalos, Physical Review D
100, 103010 (2019).
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the fitting form presented in this appendix. The arrows mark aRH as defined in Eq. (B.1).

the function g(x, y) is defined

g(x, y) =
{

1 + [A(y)x]B(y) + [C(y)x]D(y)
}−E(y)

,

A(y) = 135.2
(
1 + 0.04734y + 0.0006373y2

)
,

B(y) = 1.093
(
1 + 0.03256y + 0.0005114y2

)
,

C(y) = 17.87
(
1 + 0.03501y + 0.0003641y2

)
,

D(y) = 3.187
(
1 + 0.03283y + 0.0005260y2

)
,

E(y) = 0.05388 (1− 0.7380y) ,

(B.4)

and the function h(x) is defined

h(x) = Ae−B(x+C)2
,

A = 0.07074, B = 0.1180, C = 0.4258.

(B.5)
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APPENDIX C:
TECHNICAL DETAILS ON PREDICTING THE DENSITY PROFILES OF

THE FIRST HALOS1

C.1 Collecting halo data

In Sec. 4.2, we carried out six simulations and catalogued all halos present at the final redshift of

each. The models we present in Secs. 4.3 and 4.4 require data on the density profiles of these halos,

and in this section, we detail our methods for collecting these data.

We first need to obtain the density profile and enclosed mass profile of each halo at the final

redshift of each simulation. To reduce random noise, we use the procedure described in Chapter 2,

wherein the profiles are averaged over a time interval. The profiles are binned at successive factors

of 1.1 in radius, but to mitigate noise associated with the binning scheme, we use a cubic spline to

smoothly interpolate them. These profiles are only valid down to the radius rsoft corresponding to

the separation below which simulation forces become non-Newtonian; for Gadget-2, rsoft is 2.8

times the force softening length. At large radii, we cut off the density profile at the radius rvir inside

which the mean enclosed density is 200 times the background density. Figure C.1 shows a random

sample of halo density profiles from each simulation.

The model developed in Sec. 4.3 predicts the coefficient A of the ρ = Ar−3/2 asymptote of

the density profile at small r. Thus, we wish to extract A from each density profile. Starting at

rsoft, we find the cumulative (logarithmic) average of ρr3/2 across radial bins, and we set A to be

the maximum of this cumulative average. The averaging procedure is intended to minimize noise

resulting from employing a narrow range of radii while at the same time minimizing the influence of

any bend in the density profile at larger radii. However, we also tested the alternative procedure of

simply finding the average of ρr3/2 within a factor of 3 in radius above rsoft and found it to yield

similar results.

We also wish to accommodate deviations from ρ ∝ r−3/2 at small radii. Unlike those of Chapter 2,

our simulations do not have the resolution to clearly resolve the power-law index of the small-radius

1This appendix accompanied an article that was previously published in Physical Review D, and it is copyright c©
2019 American Physical Society. The original reference is as follows: M. S. Delos, M. Bruff, and A. L. Erickcek,
Predicting the density profiles of the first halos, Physical Review D 100, 023523 (2019).
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Figure C.1: The density profiles of three random halos from each simulation’s final box.

asymptote, but we may still hope to see statistical correlations in our large sample. For each halo,

we measure the slope γ of the small-radius asymptote ρ ∝ r−γ by considering the radius range from

rsoft to 3rsoft and fitting a line in log space to the density profile within this range.

To test the models presented in Sec. 4.4, we also need to compute the radius rmax at which the

circular velocity is maximized along with the mass M(rmax). Since we already obtained the enclosed

mass profile M(r) for each halo, we simply find the maximum value of M(r)/r. The parameters rmax

and M(rmax) are then defined to be the radius and enclosed mass at which M(r)/r is maximized.

C.2 Collecting peak parameters

The models we present in Secs. 4.3 and 4.4 employ data on the peaks in the linear density

field δ(x) ≡ δ(x, a)/a (evaluated during matter domination). We obtain these data using Fourier

methods, defining

δ(k) ≡
∫

d3x e−ik·xδ(x). (C.1)

The derivatives of δ at a peak located at x immediately follow as

∂i∂jδ = −
∫

d3k

(2π)3
eik·xkikjδ(k). (C.2)
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Similarly, using Poisson’s equation, the derivatives of the (peculiar) gravitational potential are

∂i∂jφ = 4πGρ̄0

∫
d3k

(2π)3
eik·x

kikj
k2

δ(k). (C.3)

The ellipsoidal refinement described in Sec. 4.3.2 requires the three-dimensional shape parameters

eφ and pφ for the potential φ about the peak. Taking λ1 ≥ λ2 ≥ λ3 to be the eigenvalues of ∂i∂jφ,

these parameters are defined

eφ ≡
λ1 − λ3

2(λ1 + λ2 + λ3)
and pφ ≡

λ1 + λ3 − 2λ2

2(λ1 + λ2 + λ3)
. (C.4)

Our model in Sec. 4.4 requires the density profile δ(r) and mass profile ∆(r) about the peak.

For a peak centered at x, these profiles are computed as





δ(r)

∆(r)

ζ(r)





=

∫
d3k

(2π)3
eik·xδ(k)





sinc(kr)

W (kr)

cos(kr)




, (C.5)

where sinc(x) ≡ sin(x)/x and W is the top-hat window function, W (x) ≡ (3/x3)(sinx − x cosx).

The third profile ζ(r) is useful because it is related to the derivative of δ(r). In particular, to

numerically integrate Eq. (4.16), we interpolate δ(r) and ∆(r) with piecewise polynomials, using the

relations
dδ

d ln r
= ζ(r)− δ(r) and

d∆

d ln r
= 3 [δ(r)−∆(r)] (C.6)

to fix their derivatives.

Figure C.2 shows the density profiles δ(r) of three peaks from each of the six simulations. The

peaks displayed are those that later collapse into the halos depicted in Fig. C.1.

C.3 Predicting the halo population from the power spectrum

A primary goal of this work is to enable a prediction of the halo population given a power

spectrum P(k) of density fluctuations. One option is to sample a density field from the power

spectrum, use the methods described in Appendix C.2 to characterize the peaks, and then apply the

models developed in this work. However, it is possible to exploit the statistics of a Gaussian random

field to compute the halo distribution more directly. In this section, we outline a practical procedure
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Figure C.2: The density profiles of three peaks from each simulation’s initial box. These peaks are
chosen to match the halos of which the density profiles are depicted in Fig. C.1.

to perform this computation by sampling from the peak distribution. Similarly to earlier sections,

we define P(k) ≡ P(k, a)/a2, where P(k, a) is the dimensionless matter power spectrum evaluated

using linear theory during matter domination. All quantities derived therefrom, such as σj and δ(x),

inherit similar scaling.

C.3.1 Number density of peaks

The first step is to find the total number density n of peaks. As derived in Ref. [269], the

differential number density of peaks in a Gaussian random field, in terms of parameters ν ≡ δ/σ0 > 0

and x ≡ −∇2δ/σ2 > 0, is

d2n

dνdx
=

e−ν
2/2

(2π)2R3∗
f(x)

exp
[
−1

2(x− γν)2/(1− γ2)
]

[2π(1− γ2)]1/2
, (C.7)

where γ ≡ σ2
1/(σ0σ2), σj and R∗ are defined in Eqs. (4.2) and (4.3), and

f(x) ≡ x3−3x

2

[
erf

(√
5

2
x

)
+erf

(√
5

8
x

)]
+

√
2

5π

[(
31

4
x2+

8

5

)
e−

5
8
x2

+

(
x2

2
− 8

5

)
e−

5
2
x2

]
. (C.8)

The ν integral can be carried out analytically, leading to

dn

dx
=

f(x)

8π2R3∗
e−x

2/2

[
1 + erf

(
xγ√

2(1− γ2)

)]
, (C.9)
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and this equation can be integrated numerically over x ≥ 0 to obtain n.

C.3.2 Asymptote A

Next, we use Monte Carlo methods to compute the distribution of coefficients A of the ρ = Ar−3/2

small-radius asymptote. The model described in Sec. 4.3 predicts this asymptote from the amplitude

δ and curvature |∇2δ| of the density peak along with the shape parameters2 e and p associated

with the potential about the peak. Equation (C.7) supplies the peak distribution in ν ≡ δ/σ0 and

x ≡ −∇2δ/σ2. Meanwhile, the conditional distribution of e and p for a peak of height ν, derived in

Ref. [373], is

f(e, p|ν) =
1125√

10π
e(e2 − p2)ν5 exp

[
−5

2
ν2(3e2 + p2)

]
. (C.10)

To compute the distribution of A, we now employ a Monte Carlo procedure. We use rejection

methods to sample x from Eq. (C.9) and then sample ν from Eq. (C.7). Next, we employ the

cumulative distributions of e and p,

F (e|ν) = e−
15
2
e2ν2 (

1− 15e2ν2
)

erf
(√

5/2eν
)
− 3
√

10/πeνe−10e2ν2
+ erf

(√
10eν

)
(C.11)

and

F (p|e, ν) =
1

2

(
5e2ν2 − 1

)[
erf
(√

5
2eν
)

+ erf
(√

5
2pν
)]

+
√

10/πν
(
pe−

5
2
p2ν2

+ ee−
5
2
e2ν2

)

(5e2ν2 − 1) erf
(√

5
2eν
)

+
√

10
π eνe−

5
2
e2ν2

, (C.12)

numerically inverting them to inverse transform sample e and p. This procedure yields a sample of

peaks with parameters ν, x, e, and p. Finally, we use Eqs. (4.6) and (4.7) to convert this sample

into a halo sample distributed in the asymptote A, and we multiply the distribution by the total

number density n to obtain the differential number density dn/d lnA.

As a test, we sample 400,000 density peaks from each of our six power spectra, and for each peak,

we compute its predicted asymptote A (without the proportionality constant) using the ellipsoidal

collapse model of Sec. 4.3.2. We plot the resulting distributions in Fig. C.3 superposed with the

distributions we find in the randomly generated simulation boxes. We find that the two distributions

2Since these parameters describe the potential, they are different from the parameters e and p in Ref. [269].
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Figure C.3: A test of the Monte Carlo halo-sampling method of Appendix C.3. This figure plots the
peaks drawn from our six power spectra distributed in the predictions for A from Sec. 4.3.2 (with
simulation-tuned parameter α factored out). The solid lines show the distributions in the initial
density field used for our simulations, while the dashed lines show the distributions computed using
the Monte Carlo method.

match well for all of our power spectra except for the 100 GeV spectrum. For this power spectrum,

directly sampling the power spectrum yields halos of higher predicted density that we find in the box.

This discrepancy is explained by noting that the simulation box only samples fluctuation modes

up to the size of the box. The 100 GeV power spectrum has sufficient power at larger scales that

neglecting it significantly reduces the amplitudes of fluctuations and therefore the density of the

resulting halos. In this way, sampling peaks directly from the power spectrum is more accurate than

using the intermediate step of sampling a density field.

C.3.3 Outer profile: rmax and M(rmax)

So far, we have obtained the halo population distributed in the small-radius asymptote A. The

next step is to extend this computation to find the multivariate distribution in A and the outer

profile parameters rmax and M(rmax) using the models discussed in Sec. 4.4. This calculation is more

difficult because, instead of the finite number of Gaussian variables relevant to the neighborhood of

each peak, we must now handle a Gaussian distribution in the infinitely many variables corresponding

to the density profile about the peak at each radius q. Nevertheless, a numerical computation is

213



0.00

0.01

0.02

0.03

0.04

R
3 ∗d
n
/
d
ln
r m

a
x w = 0.1

w = 0.3
w = 0.5

0.3 1 2

rmax/β (runit)

0.00

0.01

0.02

0.03

R
3 ∗d
n
/
d
ln
r m

a
x EMDE

100 GeV
3.5 keV
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tractable.

The idea is to Monte Carlo sample the full density profile δ(q) about the peak. To accomplish

this, we must discretize the radial coordinate such that

0 ≤ q1 < q2 < ... < qN (C.13)

for some large N . The maximum radius may be initially set at some qN & R∗ and raised as needed.

For shorthand, we will write δi = δ(qi) and use δ to represent the full vector of δis. We now seek the

distribution of δ conditioned on the data we already used to find the asymptote A. In fact, δ has

vanishing covariance with the three-dimensional shape of the peak, so we need only the conditional

distribution f(δ|ν, x). This distribution is Gaussian with mean

δ̄i =
(〈δiν〉 − γ 〈δix〉) ν + (〈δix〉 − γ 〈δiν〉)x

1− γ2
(C.14)
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A and rmax from Secs. 4.3.2 and 4.4.2, respectively (with simulation-tuned parameters α and β
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density field. The color scale indicates the differential number density d2n/(d lnA d ln rmax) in units
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∗ .

(recalling γ ≡ σ2
1/[σ0σ2]) and covariance matrix

Cij = 〈δiδj〉 −
1

1− γ2
[〈δiν〉 〈δjν〉+ 〈δix〉 〈δjx〉 − γ (〈δiν〉 〈δjx〉+ 〈δix〉 〈δjν〉)] (C.15)

with the necessary covariances given by





σ0 〈δiν〉

σ2 〈δix〉

〈δiδj〉





=

∫ ∞

0

dk

k
P(k)





sinc(kqi)

k2 sinc(kqi)

sinc(kqi) sinc(kqj)




. (C.16)
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It is helpful to diagonalize C = PDP T so that P is an orthogonal matrix and D = diag(λ1, ..., λN )

is diagonal. If we define a new vector κ ≡ P T (δ − δ̄), then κ is distributed as

f(κ|ν, x) =
N∏

i=1

1

(2πλi)1/2
exp

(
− κ2

i

2λi

)
. (C.17)

We then sample each κi from its respective univariate Gaussian distribution, and the density profile

δ immediately follows using δ = δ̄ + Pκ. From the density profile δ → δ(q), we can find the mass

profile ∆(q) using Eq. (4.8). With these profiles in hand, it is now a simple matter to apply any of

the models detailed in Sec. 4.4.

To test this procedure, we sample density profiles for the same 400,000 peaks from each power

spectrum for which we already sampled the peak parameters. Using the s = 0 contraction model in

Sec. 4.4.2, Fig. C.4 compares the rmax distributions binned from our initial density fields to those

computed using the Monte Carlo method. As before, the distributions from the 100 GeV power

spectrum are discrepant, likely owing again to the finite size of the random density fields. Also, there

is a tendency for the random density fields to produce less sharply peaked distributions than the

Monte Carlo method, especially for the w = 0.1, w = 0.3, and EMDE power spectra. It is unclear

where this discrepancy arises, but it could be connected to the finite grid resolution of the random

density fields. For a second test, we also plot the combined A-rmax distribution for the 3.5 keV power

spectrum in Fig. C.5. The Monte Carlo method proposed in this section accurately reproduces the

correlations between A and rmax found in the density field.
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APPENDIX D:
TECHNICAL DETAILS ON SIMULATING AND MODELING THE TIDAL

EVOLUTION OF SUBHALOS1

D.1 Simulation details

D.1.1 High- and low-resolution particles

As Sec. 5.2 notes, we sample the subhalo’s central region at increased resolution such that

particles whose orbital pericenters are below rs/3 have 1/64 the mass and 64 times the number

density of the other particles. When simulation particles have different masses, it is possible for

two-body interactions to artificially transfer energy from the heavy to the light particles. To verify

that this effect is not significant in our simulations, we show in Fig. D.1 the density profiles of light

and heavy particles in a subhalo not exposed to tidal forces. Even after duration t = 318(Gρs)
−1/2,

where ρs is the subhalo’s scale density, there is no visible tendency for the heavy particles to sink to

smaller radii.

D.1.2 Density profiles and J factors

We obtain each subhalo’s density profile by binning it in factors of 1.1 in the radius. At small

radii, there is a resolution limit driven by three effects: force softening, Poisson noise, and artificial

relaxation. Each effect is associated with a minimum resolved radius below which the density

profile artificially flattens. For force softening, that radius is the distance rsoft = 2.8ε, where ε is

Gadget-2’s force-softening parameter, at which forces become non-Newtonian. For Poisson noise,

we take it to be the radius r100 enclosing 100 particles. To estimate the radius rrel at which artificial

relaxation becomes significant, we compute the relaxation time [392]

trelax =
N

8 ln Λ

r√
GM/r

(D.1)

at each radius r, whereM and N are the mass and particle count interior to r, and Λ = max{N, r/ε}.

If αtrelax at radius r, with an appropriate proportionality constant α, is shorter than the system age,

1This appendix accompanied an article that was previously published in Physical Review D, and it is copyright c©
2019 American Physical Society. The original reference is as follows: M. S. Delos, Tidal evolution of dark matter
annihilation rates in subhalos, Physical Review D 100, 063505 (2019).
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Figure D.1: Absence of relaxation effects associated with the use of different particle masses. This
figure shows separately the density profiles of light (high-resolution) and heavy (low-resolution)
particles inside the same halo; this halo is not exposed to tidal forces. There is no visible tendency
for the heavy particles to sink to lower radii even after duration t = 318(Gρs)

−1/2 (dashed lines).
The profile of low-resolution particles is plotted down to the radius containing 100 such particles.
As a separate effect, the density profile of light particles shallows at small radii due to two-body
relaxation (between light particles alone); the resolution limit rrel imposed by this effect, described
in Appendix D.1.2, is shown (vertical line).

then r < rrel. The proportionality constant α is tuned to predict the correct rrel in a simulation of

the subhalo without a host; in that case, any change to the density profile is artificial since the halo

was built from an equilibrium distribution. From this calibration we use α = 5. Figure D.1 shows

how rrel marks where the density profile begins to shallow due to relaxation effects.

The minimum resolved radius of the density profile is rmin = max{rsoft, r100, rrel}. For the

purpose of accurately computing J factors we extrapolate the density profile below rmin as ρ = Ar−1,

where A is the average of ρr in the three smallest radial bins above rmin, so that

J = 4πA2rmin +

∫ ∞

rmin

ρ(r)24πr2dr. (D.2)

Effectively, this procedure produces a lower bound on J under the assumption that larger radii

are always stripped more than smaller radii. Below rmin, we simply assume all radii are stripped

equally. We can also compute an upper bound on J by assuming that radii below rmin are completely

unaffected (so A = ρsrs), and this allows us to estimate the uncertainty in our J factors. We find

that by the termination time of each subhalo’s J-factor trajectory (as defined in Sec. 5.4), the

uncertainty in the J factor, taken as Jupper/Jlower− 1, is 31% for one simulation (parameters x = 31,

y = 11, z = 0.07; see Sec. 5.4), smaller than 17% for the remaining 51 simulations, and smaller than
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10% for 44 of them.

To understand the J factors in the cases where |d ln J/d ln t| & 1, another step is necessary.

In this regime, the elongated tidal stream can contribute significantly to the J factor, making

the spherical integral Eq. (D.2) inaccurate. Thus, we also compute the J factor as the sum over

simulation particles

J =
∑

i

ρimi, (D.3)

where mi is the mass of particle i and ρi is its local density. The density ρi is estimated as

ρi =
N∑

j=1

mjW (rij , hi) (D.4)

over the N = 50 nearest particles j, where rij is the distance to particle j, hi is the distance to the

Nth particle, and W (r, h) is the cubic spline kernel defined as in Ref. [274].

Equation (D.3) underestimates the J-factor contribution at r < rmin due to artificial flattening

of the density profile. To accommodate the extrapolation procedure in Eq. (D.2) that addresses

this problem, an additional step is required. We find the bound remnant of the subhalo using a

procedure similar to that in Ref. [328]. Beginning with the assumption that all particles are bound,

we iteratively compute the gravitational potential of each particle due to all other bound particles

using a Barnes-Hut octree [503] with θ = 0.7 and the same softening length as the simulation.

Subsequently, we mark each particle as unbound if its total energy is positive and bound if its total

energy is negative. At each step, we find the center-of-mass position and velocity of the 100 most

bound particles and recenter the full system to be relative to this center of mass. All particles

are initially marked as bound, and the procedure terminates when the count of bound particles

converges.2

By assuming that the bound remnant is spherically symmetric, we can estimate the J factor

both including spherical asymmetry and compensating for the flattening of the density profile below

rmin. If Jfull is the J factor of the full system computed using Eq. (D.3) and Jbd,rad and Jbd are the

2This halting condition is stricter than the one in Ref. [328].
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Figure D.2: Simulations of the same tidal evolution scenario carried out with different simulation
parameters. For each simulation, two J-factor trajectories are plotted corresponding to the lower
and upper limits discussed in Appendix D.1 (the lower limit is the value we use throughout this
work). The upper and lower limits of each simulation overlap, implying numerical convergence.

J factors of the bound remnant computed using Eqs. (D.2) and (D.3), respectively, then

J = Jfull − Jbd + Jbd,rad. (D.5)

D.1.3 Numerical convergence

In our simulations, we set Gadget-2’s force-softening length to be ε = 0.003rs. This small

value is intended to evade the artificial subhalo disruption observed by Ref. [409]. Meanwhile, the

subhalo’s high-resolution particles (see Sec. 5.2) have mass 4.3× 10−7ρsr
3
s . To check that numerical

artifacts in our simulations are under control, we test the impact of changing the softening length

and the particle resolution. Additionally, we test the impact of altering the (adaptive) integration

time steps in order to ensure there are no artifacts arising from the application of the host’s tidal field

over these discrete intervals. In Fig. D.2, we plot the J-factor trajectory in a reference simulation

(with system parameters x = 34, y = 0.018, and z = 0.15; see Sec. 5.4) along with three simulations

of the same system with different particle resolution, force softening, and integration time steps. We

plot the upper and lower limits of the J-factor trajectory as discussed above. These limits overlap

for all simulation parameters, suggesting that the simulation is converged.

D.2 Subhalo size

In our simulations we applied the host halo’s tidal forces using the linearized expression given by

Eq. (5.3), which is valid in the limit that the subhalo is much smaller than its orbital radius. Thus,
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Figure D.3: Influence of a subhalo’s size on its tidal evolution. This figure shows the trajectory
of a subhalo’s J factor for several different values of the ratio rs/Rc between the subhalo’s scale
radius and the radius of its orbit about the host; the relative orbital radius Rc/Rs is held fixed along
with all other parameters. Thin lines show full trajectories while thick lines show averages over
each orbital period. When rs & 0.1Rc, the tidal evolution begins to diverge from the evolution in
the rs � Rc limit (solid curve). The double peak in the first orbit arises because of the subhalo’s
truncation radius in these simulations and is not relevant to the comparison.

our results are applicable in the rs � Rc limit. In this appendix, we explore precisely how far the

applicability of our results can be taken. For this purpose we executed several simulations using the

exact tidal force Ftidal(r) = F (R+ r)−F (R) instead of the linearized version, and we compare the

results of these simulations to those of a simulation that employed the linearized force. The subhalos

in all of these simulations are cut off at radius 5rs to avoid excessive overlap with the host’s center;

this change does not affect the comparison since it applies equally to every simulation.

We subjected subhalos of different sizes to the same tidal evolution scenario with parameters

x = 21, y = 0.056, and z = 0.18 in the parametrization given in Sec. 5.4. Figure D.3 shows the

tidal evolution of the subhalo’s J factor for different values of the ratio rs/Rc between the subhalo’s

scale radius and the radius of its orbit about the host. We find that the tidal evolution begins to

diverge markedly from that induced by the linearized tidal force when rs & 0.1Rc. Note that this

analysis still neglects dynamical friction (including self-friction, due to the limited duration of these

simulations); the influence of this effect is also sensitive to the subhalo’s size. Thus, our results are

applicable if both rs . 0.1Rc and dynamical friction can be neglected (see Sec. 5.2).

D.3 Computational details

In this appendix, we present practical ways to compute the reduced variables x, y, and z along

with the orbital period T . For convenience, we include fitting formulas to approximate the necessary
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integrals. In what follows, the host is assumed to possess an NFW profile with scale radius Rs and

scale density Ps; its mass profile is

M(R) = 4πPsR
3
s

[
ln

(
1 +

R

Rs

)
− R/Rs

1 +R/Rs

]
, (D.6)

its force profile is F (R) = GM(R)/R2, and its potential profile is

Φ(R) = −4πGPsR
2
s

ln(1 +R/Rs)

R/Rs
. (D.7)

Meanwhile, the subhalo’s orbit about the host is parametrized by the circular orbit radius Rc and

circularity η, and as shorthand, we define yc ≡ Rc/Rs.

D.3.1 Computing x = |Eb|/∆Eimp

The binding energy Eb of a particle at the subhalo’s scale radius rs is given by Eq. (5.15).

Meanwhile, the total energy ∆Eimp injected into a particle at radius r by tidal forces over the course

of a subhalo orbit is computed using the impulse approximation, as described in Ref. [425]. This

energy depends on the particle’s full three-dimensional position within the subhalo, but we simplify the

picture by averaging this energy over the sphere at radius r. Dimensionally, ∆Eimp/r
2 ∼ F (Rc)/Rc,

and we can approximate

∆Eimp

r2
= P1(yc) exp

{
P2(yc)

[
1− ηP3(yc)

]} F (Rc)

Rc
, (D.8)

where P1(yc) is defined

P1(yc) =
A(1 +B ln(1 + yc)− Cyc/(D + yc))

1 + E(ln(1 + yc)− 2yc/(2 + yc))
,

A = 3.327, B = 0.6463, C = 0.8837, D = 0.8809, E = 0.2156,

(D.9)

P2(yc) is defined

P2(yc) = A(1 + (yc/c)
a)b,

A = 3.005, a = 3.641, b = 0.08513, c = 0.5703,

(D.10)
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Figure D.4: A resolution comparison between our simulations (top) and those of the DASH library
(bottom). The (log-space) integrand for the J factor, ρ2r3, is plotted for an example subhalo from
each catalogue with similar system parameters (x, y, and z; see Sec. 5.4) at n = 0 and n = 5 orbits.
The J factor is the area under the curve. Below the resolution limit rmin, we plot a pessimistic
extrapolation of the density profile; see Appendix D.1.

and P3(yc) is defined

P3(yc) =
A(1 + (yc/c1)a1)b1

(1 + (yc/c2)a2)b2(1 + (yc/c3)a3)b3
,

A = 0.2150, a1 = 1.017, b1 = 0.8650, c1 = 0.5057, a2 = 2.774,

b2 = 0.2426, c2 = 0.6415, a3 = 0.7663, b3 = 0.6508, c3 = 18.84.

(D.11)

For η > 0.04, this expression is accurate to within 3% for yc < 10 and within 14% for yc < 103.

D.3.2 Computing y = R̄/Rs

The time-averaged radius R̄ of the orbit is approximately Rc, and, in fact, R̄/Rc → 1 as

Rc/Rs → 0. More broadly, the expression

R̄

Rc
=

1+B(1−FηG) ln(1+yc)−Cyc/[D(1−HηI)+yc]

1 + E(ln(1 + yc)− 2yc/(2 + yc))
,

B = 0.3777, C = 0.4892, D = 2.412, E = 0.2426, F = 0.3556, G = 1.860, H = 0.1665,

(D.12)

is accurate to within 0.3% for η > 0.04 and yc < 103.
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Figure D.5: A test of our model against the DASH simulations. This figure plots the J-factor
trajectory parameters a, b, and c for the DASH simulations against the system parameters x, y,
and z. The solid curves are our model predictions; they are the same curves shown in Figs. 5.10,
5.11, and 5.13. Note that the offset between the solid line and the simulations in the upper-left
panel is not a discrepancy, for the solid line is only valid for y � 1. The DASH simulations exhibit
significant scatter but broadly support our model with some systematic discrepancies discussed in
Appendix D.4. The radius of each marker is proportional to the number of orbital periods, which
ranges from 5 to 11.

D.3.3 Computing z = ra/rt

We define the adiabatic shielding radius ra and the tidal radius rt as the solutions tom(ra)/r
3
a = ρa

and m(rt)/r
3
t = ρt, respectively, where m(r) is the subhalo’s initial NFW mass profile [see Eq. (D.6)].

Here, ρa and ρt are functions of the subhalo’s orbit; in particular,

ρa ≡
V 2
p

GR2
p

= η2M(Rc)Rc
R4
p

and ρt ≡
M(Ra)

R3
a

, (D.13)

where Rp and Ra are the orbital pericenter and apocenter radii, which may be obtained as the two

solutions R to

Φ(Rc)− Φ(R) +

(
1− η2R

2
c

R2

)
GM(Rc)

2Rc
= 0. (D.14)
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D.3.4 Computing T

Dimensionally, the radial orbit period T ∼ t0, where t0 ≡
√
Rc/F (Rc). More precisely, the

expression
T

t0
=
A(1 + FηG)[1 +B ln(1 + yc)− Cyc/(D + yc)]

1 + E(1 +HηI)(ln(1 + yc)− 2yc/(2 + yc))
,

A = 3.460, B = 0.6076, C = 0.8831, D = 2.312, E = 0.3325,

F = 0.04827, G = 1.261, H = 0.03606, I = 1.288,

(D.15)

is accurate to within 0.2% for η > 0.04 and yc < 103.

D.4 Comparison to the DASH library

Reference [342] published a library called Dynamical Aspects of SubHaloes (DASH) of idealized

subhalo simulations. This library includes the results of 2177 simulations, with different system

parameters, of an N -body subhalo orbiting an analytic host potential. These simulations resolve

significantly less of the subhalo density profile than do ours; as shown in Fig. D.4, they can leave

large fractions of the J factor unresolved. Also, the DASH library covers a smaller parameter range

in x, y, and z. Nevertheless, because of the extraordinary volume of this library, it can serve as a

test for our model.

We use the procedure in Appendix D.1 to find the J-factor trajectory of each DASH simulation,3

imposing an additional constraint that the trajectory halt when the maximum uncertainty in the J

factor is larger than a factor of 3. Next, we fit the parameters a, b, and c to this trajectory as in

Sec. 5.4. For the DASH simulations, Fig. D.5 plots (in the same way as Figs. 5.10, 5.11, and 5.13)

the trajectory parameters a, b, and c against the system parameters x, y, and z. Superposed are our

model predictions, as solid lines, using the parameters obtained in Sec. 5.4.

We first remark that all DASH simulations have y > 2, so we cannot directly test Eq. (5.18)

describing the behavior of b in the y � 1 self-similar regime. Nevertheless, the upper-left panel of

Fig. D.5 shows that the DASH simulations exhibit roughly the same power-law behavior b ∝ x−0.58

predicted by Eq. (5.19) (the offset between our curve and the simulations here is not a discrepancy).

The lower panels show the sensitivity of a and b to y. Because the DASH simulations only cover

3We use a larger α = 20 to find rrel for the DASH simulations, obtained by recalibrating for these simulations. Note
that larger α implies more optimism about simulation resolution.
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a small range of y, we cannot verify the functional form of each parameter in y. Also, there is

substantial scatter, especially at large x. Nevertheless, our model predicts roughly the correct values

of a and b for these simulations, although there is a tendency for the simulations to have smaller

values of a and larger values of b. Finally, although the scatter in c is quite large, the relationship

between c and z is approximately borne out in the DASH simulations.

The tendency for the DASH simulations to yield small a and large b can be understood as a

resolution artifact. Below the resolution limit, we extrapolate the density profile in a way that always

underestimates the J factor (see Appendix D.1). This underestimation both increases the immediate

loss of the J factor, reducing a, and increases the rate at which J decays (since artificial relaxation

worsens the resolution over time), raising b.

Also, there is a tendency for systems at the large-x end to exhibit large scatter in a, b, and c as

well as a precipitous drop in b (sometimes even to b < 0). This trend is also an unphysical artifact.

In our simulations, we observed the same trend when x & 200, which is why our simulation sample

in Sec. 5.4 only includes x < 200. For the lower-resolution DASH simulations, the trend begins at

x & 50. The numerical difficulty with large x is unclear, but it is likely connected to the fact that

large x implies the subhalo’s internal forces are much stronger than the external tides. The vast

difference in the scales of these forces could lead to issues in numerical precision when the tiny tidal

forces are added to the large internal forces.

D.5 The broader density profile

References [340] (hereafter H03) and [341] (hereafter P10) studied the tidal evolution of a

subhalo’s density profile, focusing on the structural parameters vmax, the maximum circular velocity

within the subhalo, and rmax, the radius at which this velocity is attained. Prior treatments of the

annihilation rate in subhalos (e.g., Refs. [347, 407]) have employed these works’ predictions of rmax

and vmax, along with the assumption that subhalos retain NFW profiles, to predict subhalo J factors.

To understand the connection between our work and these prior works, this appendix investigates

the evolution of rmax and vmax in our simulations.

At each snapshot of our simulations, we find rmax as the radius r < rt that maximizes vcirc =
√
Gm(r)/r, and vmax is the corresponding maximum. We only consider snapshots up to the point

where |d ln J/d ln t| = 1, as discussed in Sec. 5.4. Additionally, we halt the rmax and vmax trajectory

when rmax becomes smaller than the resolution limit (see Appendix D.1), and we only include
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Figure D.6: The relationship of the subhalo properties rmax (top), vmax (middle), and J (bottom) to
its bound mass mbound after tidal stripping. rmax is cleanly related to mbound, but the scatter is
larger for vmax and still larger for J . Each point represents the average over a single orbit in our
simulations, and the solid lines represent the displayed fitting functions. The dashed and dotted
lines correspond to the predictions of P10 and H03, respectively, assuming that the initial mass is
4.5mmax,init. The P10 prediction in the last panel additionally assumes an NFW profile.

simulations whose trajectories cover at least five orbits about the host. This restriction reduces our

simulation count to 41, 33 of which are in the self-similar regime (Rc/Rs < 0.3).

D.5.1 Relations between structural parameters

Following H03 and P10, we first explore the relationship between a subhalo’s structural parameters

and its total mass loss. These prior works parametrize the mass loss using the ratio mbound/macc,

where mbound is the mass that remains bound to the subhalo and macc is its virial mass at accretion.

However, this parametrization implies that the impact of tides is strongly sensitive to the subhalo’s

initial concentration, and we propose that this sensitivity is unphysical since the outer layers may

be stripped almost immediately upon accretion onto the host. To evade this problem, we instead

parametrize the mass loss using the ratio m̃ ≡ mbound/mmax,init of mbound to the mass initially
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enclosed within rmax; this ratio is initially larger than unity. We compute mbound using the procedure

in Appendix D.1, and Fig. D.6 shows these relationships. For comparison we also plot the predictions

of H03 and P10 assuming macc = 4.5mmax,init, which corresponds to subhalo concentration csub ' 20

at accretion.

We find that rmax is cleanly related to mbound by a power law. Additionally, for both rmax and

vmax, the predictions of P10 (with csub ' 20) work reasonably well as long as R̄ > Rs. However, the

bottom panel of Fig. D.6 shows that there is substantial scatter in the relationship between J and

mbound, and P10 does not accurately predict the J factor if an NFW profile is assumed. The scatter

partially results from the modest scatter in vmax, since J ∝ v4
max, but it also reflects that tidally

altered density profiles differ significantly from NFW. Figure D.7 investigates this effect further and

shows that a subhalo’s J factor is roughly 30% smaller than what would be predicted from rmax and

vmax assuming an NFW profile.

D.5.2 Time evolution of structural parameters

We can also predict the evolution of the subhalo’s structural parameters more explicitly. Subjected

to tidal forces, rmax and vmax follow qualitatively similar trajectories to the J factor:

ln
rmax

rmax,init
= br

[
ar −

1

1− cr
(
n1−cr − 1

)]
, (D.16)

ln
vmax

vmax,init
= bv

[
av −

1

1− cv
(
n1−cv − 1

)]
, (D.17)
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Figure D.8: The rmax and vmax trajectory parameters br and bv plotted against the system parameters
x and y (cf. Fig. 5.10); see Eqs. (D.16) and (D.17). The radius of each marker is proportional to
the number of orbital periods, which ranges from 5 to 15 for this sample.

where n = t/T is the number of orbits [compare Eq. (5.14)]. Note that the total bound mass, mbd,

behaves similarly; its trajectory follows from Eq. (D.16) by inverting the equation in the top panel of

Fig. D.6. As shown in Figs. D.8, D.9, and D.10, br, cr, bv, and cv appear to depend on the system

parameters x, y, and z in the same way that b and c did:

br = 0.48x−0.38 [1 + 0.70f(y)] , (D.18)

cr = 0.91z0.13, (D.19)

bv = 0.28x−0.58 [1 + 1.36f(y)] , (D.20)

cv = 0.78z0.22. (D.21)

However, Fig. D.9 shows that unlike a, the parameters ar and av depend not only on y but

also on x. Moreover, they are only sensitive to x in the self-similar regime (Rc/Rs < 0.3). We

fit the equation ar = ar0 ln(x/ar1), and likewise for av, in the self-similar regime. Next, we fit

ar − ar0 ln(x/ar1)[1− f(y)/2] = −ar2f(y), and likewise for av, using all simulations. The function

f(y) asymptotes at 2 for large y, so the combination [1− f(y)/2] suppresses the x-dependent part of
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Figure D.9: The rmax and vmax trajectory parameters ar and av plotted against the system parameters
x and y (cf. Fig. 5.11); see Eqs. (D.16) and (D.17). The radius of each marker is proportional to
the number of orbital periods, which ranges from 5 to 15 for this sample.

ar and av at large r. Hence, we obtain

ar = 0.53 ln(x/84) [1− f(y)/2]− 1.26f(y) (D.22)

av = 0.37 ln(x/12) [1− f(y)/2]− 1.21f(y), (D.23)

as depicted in Fig. D.9.

Broadly, there is more scatter in the trajectory parameters ar, br, cr, av, bv, and cv of rmax and

vmax than in the parameters a, b, and c of the J factor, when plotted against the system parameters

x, y, and z (cf. Figs. 5.10, 5.11, and 5.13). The source of this scatter is unclear, but it is likely that

rmax and vmax are more sensitive than J to additional effects beyond those accounted for by the

parameters x, y, and z. Such heightened sensitivity is plausible for two reasons. First, rmax and

vmax are more sensitive than J to the density profile at large radii, which could depend on details of

the tidal forces to which the inner profile is insensitive. Second, rmax and vmax, being defined using

the condition d(m(r)/r)/dr = 4πrρ(r)−m(r)/r2 = 0, can be sensitive to fine details in the density

profile ρ(r). As an integrated quantity, the J factor does not exhibit this sensitivity.
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APPENDIX E:
TECHNICAL DETAILS ON MODELING THE IMPACT OF STELLAR

ENCOUNTERS ON MICROHALO DENSITY PROFILES1

E.1 Accuracy of the impulse approximation

In this appendix, we explicitly simulate microhalo-stellar encounters in order to test the validity

of the impulse approximation employed in Sec. 6.2. Reference [322] used such simulations to

demonstrate that the impulse approximation is accurate in the case where the stellar encounter

timescale is of order 10−3 the microhalo dynamical timescale. However, we aim to explore how far

the impulse approximation can be taken.

For these simulations, we set the encounter parameters b = 16rs andM∗/(V b2) = 0.76
√
ρs/G. As

discussed in Sec. 6.3, these parameters suffice to fully describe the encounter, at least in the impulsive

regime, and they correspond to the parameters q = 0.093 and p = 16 as defined in that section.

With these parameters, we prepare an N -body microhalo as in Sec. 6.2, but instead of perturbing

the particle velocities using the impulse approximation, we insert the star as a point mass in the

simulation. The star is placed at position (800rs, b, 0) with velocity (−V, 0, 0), and the simulation is

carried out for a duration of 1600rs/V , so that since its trajectory is essentially unperturbed, the

star’s final position is (−800rs, b, 0). The maximum time step of simulation particles is enforced to

be 0.2b/V so that there are at least 500 time steps, and we verified that a naive numerical integral

with this time stepping scheme accurately reproduces the analytic impulse approximation.

At the end of this simulation, we remove the star and subsequently continue the simulation

for the duration 10tdyn with the same parameters as in Sec. 6.2. The time step is no longer

artificially small. We executed this procedure for several different encounter velocities V , and the

resulting microhalo density profiles are shown in Fig. E.1. The validity of the impulse approximation

can be conditioned on the comparison between the encounter timescale b/V and the microhalo’s

internal dynamical timescale tdyn given by Eq. (6.4), and we find that deviations from the impulse

approximation become significant only when tdyn . 5b/V . The heightened efficacy of slow encounters

1This appendix accompanied an article that was previously published in Physical Review D, and it is copyright c©
2019 American Physical Society. The original reference is as follows: M. S. Delos, Evolution of dark matter microhalos
through stellar encounters, Physical Review D 100, 083529 (2019).
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Figure E.1: A test of the impulse approximation. This figure shows the microhalo density profile
resulting from several different stellar encounters; b and M∗/V are held fixed, but we vary the
velocity V . The impulse approximation (solid line) corresponds to V →∞, and we find that as long
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that resulting from the impulse approximation.

at altering a microhalo’s structure, apparent in Fig. E.1, can be understood in light of the tendency

for postencounter relaxation to make a halo more susceptible to future encounters (see Sec. 6.4.1). If

tdyn . b/V , the halo begins to relax even as the encounter progresses, increasing its susceptibility to

that same encounter.

E.2 Encounters in close succession

In this appendix, we test a microhalo’s response to multiple encounters occurring within its

dynamical timescale. Recall that on average, encounters separated by a time interval t � tdyn

are more efficient than simultaneous encounters at altering the microhalo’s structure. To test

the intermediate t . tdyn regime, we carry out a series of simulations of two identical encounters

separated by varying time t. The impact of two closely spaced encounters is highly sensitive to the

geometry between them, so we consider two extreme cases. In the first case, the encounters are

collinear, so their velocity injections add constructively. In the second case, the velocity injections

add destructively; this is attained by making them parallel but in perpendicular directions from the

halo [e.g., swapping the y and z coordinates in the scenario of Eq. (6.2)].

The encounters we study here have relative energy injection parameter q = 1/120, and we plot

in Fig. E.2 the changes in the microhalo’s scale radius rs that result from these scenarios. At each

time separation t, we also compute the average between the constructive and destructive scenarios

233



0 1 2 3 4

t/tdyn

0.7

0.8

0.9

1.0

r′ s
/r

s

t = 0

t � tdyn

constructive
destructive
average

Figure E.2: The impact of two encounters separated by a short time t. We plot the change in rs for
two encounter geometries, one in which the velocity injections add constructively and one in which
they add destructively. The solid line indicates the average between the two cases, computed as
described in the text. The dashed line marks the change in rs in the t � tdyn scenario while the
dotted line represents the expected impact of simultaneous encounters. Evidently, encounters should
be treated as simultaneous if they are separated by less than a few dynamical time intervals.

in the following way. We compute an effective parameter qeff for each double-encounter scenario by

inverting Eq. (6.13). Next, we average the effective energy injections qeff for the constructive and

destructive scenarios, and we use Eq. (6.13) to convert the resulting average qeff into a change in

rs. This procedure automatically yields the correct expected impact of two encounters of arbitrary

geometry in the t = 0 case, but for t > 0 it can be considered only a guide. The result is also plotted

in Fig. E.2, and we find that, roughly speaking, two encounters can be treated as simultaneous if

they are separated by less than a few dynamical time intervals.

E.3 Impact of encounters on the phase-space distribution

Figures 6.5 and 6.6 depict a remarkably precise relationship between the relative energy injection

parameter q and the change in a microhalo’s density profile. This precision suggests that it should

be possible to derive from first principles the parameters ζ = 0.63 and η = 0.72 that set these

relationships. However, the change in the density profile is determined in a complicated way by

both the initial heating of halo material and the subsequent relaxation of the halo, making such a

derivation challenging. As a demonstration, we plot in Fig. E.3 the phase-space density f(E) of a

microhalo before and after various stellar encounters. The function f(E) after a stellar encounter is

not related in an obvious way to f(E) beforehand; for instance, it is not related, even approximately,

by either truncation beyond some energy Et or a combination of that truncation with the lowering

of f(E) to maintain continuity at Et, procedures suggested by Ref. [504].
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Figure E.3: Phase-space density f(E) = d6m/(d3xd3v), as a function of energy E of halo particles,
for a microhalo before and after different stellar encounters; the relative energy parameter q associated
with each encounter is listed. E and f are normalized to properties of the initial density profile, and
E is additionally specified relative to the floor Emin of the potential well. We choose an initial halo
that has already experienced a stellar encounter, so it has a density profile described by Eq. (6.5)
with α = 0.78 instead of an NFW profile. As discussed in Appendix E.3, simple interpretations fail
to accurately describe how f(E) changes in response to an encounter.

The key challenge to such a simple interpretation is that particles throughout the halo are heated

by the stellar encounter, even those that remain tightly bound. The resulting elevation of halo

particles alters the gravitational potential even at small radii, which in turn further changes the

energies E of halo particles. For this reason, Fig. E.3 shows that f(E) decreases significantly in

response to an encounter even at small E, an effect these simple interpretations do not capture. Due

to these challenges, we leave to future work a first-principles derivation of Eqs. (6.13) and (6.14)

and their parameters ζ and η.
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APPENDIX F:
TECHNICAL DETAILS AND FURTHER MODEL DEVELOPMENT FOR
PREDICTING THE GAMMA-RAY SIGNATURE OF EARLY MATTER

DOMINATION1

F.1 Baryonic suppression of small-scale dark matter density fluctuations

Before recombination, baryons do not accrete into overdense regions because they are coupled

to the photons. Afterward, they still resist gravitational infall on small scales because a residual

ionization fraction maintains the baryons at a temperature close to that of the cosmic microwave

background [471]. In particular, dark matter structures of mass smaller than about 105M� are not

expected to accrete baryons. Consequently, dark matter density fluctuations at the microhalo scales

we are concerned with grow more slowly than would otherwise be expected, and in this appendix

we discuss how this effect influences the population of microhalos determined by the framework in

Chapter 4.

During matter domination, matter density contrasts δ ≡ δρ/ρ̄ grow as δ(a) ∝ a in the linear

regime (δ � 1) if both baryons and dark matter contribute (or if baryons are absent). However,

if baryons do not accrete into dark matter overdensities, then the dark matter density contrasts

instead grow as δ(a) ∝ aµ with [273]

µ =
5

4

(
1− 24

25

Ωb

Ωm

)1/2

− 1

4
. (F.1)

Here, Ωb and Ωm are the ratios of baryon and matter density today, respectively, to the critical

density; if Ωm = 0.31 and Ωb = 0.049 [476], then µ = 0.901. This difference in growth rate is

significant. As an approximate example, a density contrast δ = 0.17 at z = 3000 would reach the

critical linear threshold δc = 1.686 and collapse at zc ' 300 if δ ∝ a or at zc ' 230 if δ ∝ aµ. Since

the characteristic density of the resulting halo is proportional to (1 + zc)
3, incorrectly adopting δ ∝ a

would lead to overestimation of this halo’s density, and hence annihilation rate, by a factor of 2.

1This appendix accompanied an article that was previously published in Physical Review D, and it is copyright c©
2019 American Physical Society. The original reference is as follows: M. S. Delos, T. Linden, and A. L. Erickcek,
Breaking a dark degeneracy: The gamma-ray signature of early matter domination, Physical Review D 100, 123546
(2019).

236



By numerically integrating the spherical collapse model with baryons treated as a smooth

background, we verified that the critical linear density contrast for collapse remains δc = 1.686. That

is, an initial spherical overdensity δi � 1 at scale factor ai collapses at scale factor (1.686/δi)
1/µai.

Additionally, the turnaround radius—the apocenter of the trajectory of the spherical shell enclosing

the overdensity—is rta = (3/5)ri/δ
1/µ
i ; the coefficient 3/5 is unaltered from its standard value.

To account for the slower growth rate of δ, we alter the definition in Chapter 4 of the scaled

density field to become

δ(x) ≡ δ(x, a)/aµ. (F.2)

Applying this definition and the spherical collapse solution above, we find that Chapter 4’s prediction

of the coefficient A of a halo’s ρ = Ar−3/2 inner asymptote becomes

A = αδ
3
2

(
1− 1

µ

)
c ρ̄δ

3
4

(
2
µ

+1
)
|∇2δ|−3/4f

− 3
2µ

ec (e, p), (F.3)

where α = 12.1 is the same proportionality constant as in Chapter 4. Here, ρ̄ ' 33.1 M�/kpc3 is the

comoving mean dark matter density [476] and fec(e, p) ≡ δec/δc is an ellipsoidal collapse correction

[373]. Meanwhile, in the turnaround model, the final radius of a mass shell at initial comoving radius

q is

r = βq/∆(q)1/µ, (F.4)

where ∆(q) = ∆(q, a)/aµ is the fractional mass excess enclosed, in linear theory, and β = 0.131 is

the same proportionality constant as in Chapter 4. The enclosed mass

M(q) = βM (4π/3)q3ρ̄ (F.5)

(βM = 0.273) is unaltered from its expression in Chapter 4, leading to

d lnM

d ln r
=

3

1 + 3ε(q)/µ
(F.6)

with ε(q) ≡ (−1/3)d ln ∆/d ln q = 1− δ(q)/∆(q). The radius rmax of maximum circular velocity and

mass mmax enclosed are obtained by solving d lnM/d ln r = 1 (or ε(q) = 2µ/3); this computation

yields an initial comoving radius qmax from which Eqs. (F.4) and (F.5) yield the desired quantities.
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F.2 Aggregate tidal suppression of subhalo annihilation rates

In this appendix, we use the model in Chapter 5 to derive, and find a fitting function for, the

overall factor by which annihilation rates from subhalos are scaled within a host due to tidal evolution.

For an individual subhalo with scale density ρs orbiting with circular orbit radius Rc and circularity

η,2 the Chapter 5 model predicts the factor

s(ρs/Ps, Rc/Rs, η, t/T ) ≡ J/Jinit (F.7)

by which the subhalo’s J factor is scaled by tidal evolution. Here, Rs and Ps are the scale radius

and density of the host, t is the duration of the tidal evolution, and T is the subhalo’s radial

(apocenter-to-apocenter) orbit period. To characterize the aggregate tidal suppression of all subhalos

within the host, we seek the quantity

S(ρs/Ps, t
√
GPs, c) ≡

∑
J∑
Jinit

, (F.8)

where the sums proceed over subhalos distributed throughout the host’s phase space. Here, c =

Rhost/Rs is the radius of the host in units of Rs, which can be interpreted as its concentration

Rvir/Rs. As Eq. (F.8) expresses, and we verified, S only depends on system parameters in the

combinations ρs/Ps, t
√
GPs, and Rhost/Rs. This property follows from the dependencies of s in

Eq. (F.7), noting that subhalo orbital periods are proportional to the host’s dynamical timescale

(GPs)
−1/2.

We let f(E,L,R) be the host halo’s distribution function, where E is energy (per mass), L is

angular momentum (per mass), and R is radius. The host’s density profile P (R) can be decomposed

in the orbital parameters as

P (R) =

∫ ∞

Rc,min(R)
dRc

∫ ηmax(R,Rc)

0
dη g(R,Rc, η), (F.9)

2As defined in Chapter 5 and elsewhere, for an orbit with energy E the circular orbit radius is the radius of the circular
orbit with that energy. Meanwhile, the circularity is the ratio η = L/Lc between the orbit’s angular momentum and
that of the circular orbit with energy E.
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where

g(R,Rc, η) ≡ 4
√

2πf
(
K(Rc) + Φ(Rc), ηRc

√
2K(Rc), R

)

× [K(Rc)/Rc + 2πGP (Rc)Rc]K(Rc)ηR
2
c/R

2

√
K(Rc)(1− η2R2

c/R
2) + Φ(Rc)− Φ(R)

(F.10)

follows from the definitions of Rc and η. Here, K(Rc) ≡ GM(Rc)/(2Rc) is the circular orbit kinetic

energy (per mass), Φ(R) is the host’s potential profile, and M(R) is its enclosed mass profile. The

integration limits in Eq. (F.9) are defined such that

K(Rc,min) + Φ(Rc,min) = Φ(R), (F.11)

ηmax ≡ (R/Rc)
√

1 + [Φ(Rc)− Φ(R)]/K(Rc). (F.12)

The decomposition in Eq. (F.9) is valuable because we can insert the individual tidal scaling factor s

into the integrand. The aggregate tidal scaling factor is thus

S =
1

Mhost

∫ Rhost

0
4πR2dR

∫ ∞

Rc,min(R)
dRc

∫ ηmax(R,Rc)

0
dη g(R,Rc, η)s(ρs/Ps, Rc/Rs, η, t/T ), (F.13)

where T = T (Ps, Rc/Rs, η) and Mhost is the host’s mass (within Rhost).

For convenience, we supply the following fitting function for S. We assume the host halo has an

isotropic distribution function f(E) and employ the fitting form for f given in Ref. [422] to evaluate

S. Let p ≡ ρs/Ps and τ ≡ t
√
GPs. For 1 < c < 102, 1 < p < 108, and 1 < τ < 104, the expression

S(p, τ, c) = exp
[
−(c/α)−β

]
,

α = 2.84p−0.698τ0.557 exp(−6.67/τ), β = 0.577p0.0476τ−0.0526 exp(−0.563/τ)

(F.14)

is accurate to within 0.08, with better accuracy when p > 10. When predicting in Fig. 7.10 the

suppression of annihilation signals from subhalos within the whole population of hosts, Eq. (F.14)

produces results that are accurate to within 2%. The predictions that use this fitting function are

shown as thin dotted lines.
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Figure F.1: The trajectory of the J-factor oscillations, J/J̄ (where J̄ is the orbital period-averaged
trajectory), in radius R/R̄, where R̄ is the time-averaged orbital radius. The J factor is larger at
smaller radii due to compressive tides. The red dashed line shows the average value of J/J̄ at each
radius, and the solid line shows our fit using Eq. (F.15).

F.3 J-factor oscillations during subhalo orbits

It is useful to model the periodic oscillations in the J factor observed in Chapter 5. While these

oscillations do not alter the overall annihilation rate in subhalos, they still introduce a systematic

biasing effect because subhalos at smaller radii have larger J , and this effect can alter the morphology

of an annihilation signal. In this appendix, we reanalyze the tidal evolution simulations in Chapter 5

to develop a simple model for the impact of these oscillations. In particular, we model J/J̄ , where

J̄ is the orbital period-averaged J factor, as a function of the ratio R/R̄ of the instantaneous to

the orbital period-averaged radius. Figure F.1 plots J/J̄ against R/R̄ for one simulation. We will

also employ the relative energy parameter x = |Eb|/∆Eimp and the relative orbital radius parameter

y = R̄/Rs defined in Chapter 5 that describe the host-subhalo system.

For each simulation, we obtain the average value of J/J̄ at each radius starting at the pericenter

of the fifth orbit about the host and ending at the final pericenter. We also consider several additional

simulations with x < 3 in order to understand the small-x behavior. Next, we fit

J/J̄ = 1− d(R/R̄− 1), (F.15)

the simplest possible relationship, to this average value. Here, d is the fitting parameter, and it

is easy to see that this equation manifestly preserves the time-averaged J factor. Both the radial

average and the fit are also depicted in Fig. F.1. One may worry that Eq. (F.15) unphysically allows

J < 0. However, we will see shortly that 0 ≤ d . 0.5, implying that J > 0 as long as Ra/R̄ < 3,
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Figure F.2: The dependence of the parameter d that describes the J-factor oscillations on the
host-subhalo system parameters x and y defined in Chapter 5. Top: in the R̄� Rs regime, d follows
a power law in x, the best fit of which is shown as a solid line. At the small-x end, we see that
x caps at roughly 0.5; the “+” markers are additional simulations at small x not used in the fit.
Bottom: scaling of the normalization of d with y = R̄/Rs. The solid line depicts the anticipated
relationship (see the text) and is not a fit. Each marker is a simulation, and the marker radius is
proportional to the number of orbital periods, which ranges from 6 to 20.

where Ra is the radius of the subhalo’s orbital apocenter. If the host has an NFW profile, then

Ra/R̄ ≤ 1.5.

Next, we relate d to the system parameters x and y. As shown in the top panel of Fig. F.2, d

follows a power law in x in the R̄� Rs regime, but additionally, d does not exceed roughly 0.5. We

find that

d ' min{d0x
−d1 , 0.5}, if R̄� Rs (F.16)

with d0 = 0.87 and d1 = 0.50. Beyond the R̄ � Rs regime, d is also sensitive to y = R̄/Rs. To

understand this sensitivity, note that as discussed in Chapter 5, the subhalo experiences compressive

tidal forces proportional to F/R along the axes perpendicular to the host-subhalo axis and stretching
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Figure F.3: Impact of the time of a stellar encounter for a subhalo undergoing tidal evolution. This
figure plots the J-factor trajectories of simulations of the same tidal evolution scenario where the
subhalo is subjected to the same stellar encounter at different times; the labels indicate the time n
of the encounter. The stellar encounter’s impact is sensitive to the subhalo’s position within its orbit
during the encounter, but otherwise, the time of the encounter has minimal impact.

forces proportional to f(R/Rs)F/R along the host-subhalo axis, where

f(y) ≡ 2 ln(1 + y)− y(2 + 3y)/(1 + y)2

ln(1 + y)− y/(1 + y)
(F.17)

and F is the host halo’s gravitational force at radius R. These forces cause the subhalo’s size to scale

as 1−A along two axes and 1 +Af(R/Rs) along the other, where A is a factor that is common to

all axes. Hence, the volume scales as V ∝ (1−A)2(1 + fA), where f = f(R/Rs), so taking J ∝ 1/V

and expanding to linear order in A, we obtain J ∝ 1 + 2A(1− f/2). Combined with Eq. (F.16), this

argument predicts the expression

d = min{d0x
−d1 , 0.5} [1− f(y)/2] , (F.18)

where y = R̄/Rs as before. The bottom panel of Fig. F.2 shows that this y-scaling works reasonably

well.

F.4 Combined impact of tidal forces and stellar encounters

Chapter 5 explored the evolution of dark matter annihilation rates in subhalos due to the host

halo’s tidal forces, while Chapter 6 explored the evolution of microhalos subjected to encounters

with individual stars. In this appendix, we explore how to combine the two effects. For this purpose,

we simulated a variety of scenarios in which tidal evolution is combined with one or more stellar
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Figure F.4: Impact of the orientation of a stellar encounter for a subhalo undergoing tidal evolution.
This figure plots the J-factor trajectories of simulations of the same tidal evolution scenario where
the subhalo is subjected to the same stellar encounter with five random orientations. Evidently, the
impact of encounter orientation is marginal.

encounters. These simulations were carried out using the methods of Chapters 5 and 6; in particular,

velocity changes due to the passing star are applied directly and the star is not explicitly simulated.

We track the evolution of the subhalo’s J factor in each simulation as in Chapter 5. In all of these

scenarios, the orbital radius is within the host’s scale radius. This region is most relevant for stellar

encounters; for instance, Draco’s stellar half-light radius of 0.22 kpc is within its 0.44-kpc scale

radius (see Sec. 7.5).

We first consider a tidal evolution scenario with ratio ρs/Ps = 1285 between the subhalo and

host scale density and ratio Rc/Rs = 0.055 between the subhalo’s circular orbit radius and the

host’s scale radius. We take the subhalo’s orbital circularity to be η = 0.5.3 In separate simulations,

we applied the same stellar encounter at the beginning of the simulation, which is an apocenter

passage, and also at the second and fifth subsequent apocenter passages. For the subhalo’s initial

density profile, this encounter has relative energy injection q ≡ ∆E/|Eb| = 1/50, with q as defined

in Chapter 6, and its impact parameter is much larger than the subhalo’s scale radius. Figure F.3

shows the J-factor evolution (averaged over an orbital period as in Chapter 5) that results from

these scenarios. Notably, the trajectory is essentially independent of the time of the encounter as

long as it occurs at an apocenter. We also show the trajectory if the encounter occurs during a

pericenter passage. As discussed in Appendix F.3, the subhalo is most compact near pericenter,

3See footnote 2 for definitions of Rc and η.
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Figure F.5: Validation and tuning of the model developed in Appendix F.4 for combining the impact
of a host halo’s tidal forces with those of stellar encounters. We plot J-factor trajectories extracted
from a variety of simulations (thick dashed and dotted lines) that include both tidal evolution and
a stellar encounter; in the upper panel we vary the stellar encounter (labeling the relative energy
parameter q), while in the middle panel we vary the subhalo orbit (labeling the orbit circularity η).
We also show simulations involving multiple stellar encounters in the lower panel. Appropriately
tuned, the model predictions (thin lines) match the simulations reasonably well. Note that for the
q = 1/555 encounter in the upper panel, the model predicts no change in the J factor.
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Figure F.6: Average radius Re of the stellar encounter injecting the most energy for microhalos
orbiting Draco. We plot Re as a function of radius R about Draco; it is averaged at each radius over
microhalo orbits and stellar encounter histories. Re is plotted relative to the subhalo’s pericenter
and apocenter, so because the curve mostly lies below 0.5 (horizontal line), disruption tends to occur
closer to pericenter.

and this compactness makes it more resistant to the stellar encounter. However, the same time

independence holds.

Tidal forces break the spherical symmetry that a subhalo would otherwise be expected to possess,

so we also verify explicitly that the orientation of the stellar encounter is inconsequential. We

simulated the above tidal evolution scenario subjected to the same stellar encounter at a fixed time

but with five random orientations. We plot the resulting J-factor trajectories in Fig. F.4. The

scatter between these trajectories is only about 5% of the change in J caused by the encounters,

which confirms that the encounter orientation does not have a significant impact.

Since the time of a stellar encounter has little impact on the resulting J-factor evolution, we

can build a model for the impact of stellar encounters based on the idea of inserting the encounters

after the tidal evolution. Let s be the orbital period-averaged tidal scaling factor for the subhalo’s J

factor due to the host’s tidal forces; that is, s = J/Jinit is the quantity predicted by the model in

Chapter 5. To build our model, we make the ansatz that for the purpose of stellar encounters, the

subhalo’s scale parameters are related to their initial NFW values by

rs/r
init
s = fsζ and ρs/ρ

init
s = gs−ξ. (F.19)

We will tune the parameters f , g, ζ, and ξ to simulations, but we enforce 3ζ − 2ξ = 1 to ensure

J ∝ ρ2
sr

3
s . For the purpose of our model, we assume that ρs and rs are the parameters of the density
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profile

ρ(r) = ρs
rs
r

exp

[
− 1

α

(
r

rs

)α]
, α = 0.78, (F.20)

which Chapter 6 found to be a universal outcome of stellar encounters. We can now apply the model

of Chapter 6 to find the scale parameters ρ′s and r′s after stellar encounters have taken place, and by

integrating the density profile we find that the subhalo’s final J factor is

J = 4.34ρ′2s r
′3
s . (F.21)

Finally, if stellar encounters would be predicted to increase J , we instead assume they have no effect.

To validate and tune our model, we carried out simulations with different stellar encounters and

different subhalo orbits. The upper panel of Fig. F.5 shows the impact of different stellar encounters,

while the middle panel shows different orbits. We also plot the predictions of the above model using

the parameters f = 0.875, g = 1.245, ζ = 0.71, and ξ = 0.57, and we find that it matches the

simulation results reasonably well. In tuning these parameters, we aim for a trajectory closer to

the simulation results for encounters at pericenter than to the results for encounters at apocenter.

This preference is justified by Fig. F.6, which plots the average radius of the most disruptive stellar

encounter, relative to apocenter and pericenter, for microhalos orbiting Draco in one of the EMDE

scenarios studied in Sec. 7.5. This quantity is plotted as a function of radius about Draco and is

averaged over microhalo orbits at that radius and over stellar encounter histories. We see that the

most disruptive encounter generally occurs closer to pericenter than to apocenter.

We also simulated scenarios involving two to three stellar encounters, the results of which are

shown in the lower panel of Fig. F.5. These encounters occur at intervals of five orbital periods,

and each encounter injects half the energy of the previous one.4 In order to match the predictions

from the model to these results, we find it necessary to add encounter energy injections directly

rather than apply the encounters consecutively. In the language of Chapter 6, we set λ =∞; the

conceptual interpretation is that a tidally evolving halo does not relax after an encounter.

4The b−4 scaling of energy injection with impact parameter implies that the three most disruptive encounters typically
inject roughly 62%, 14%, and 6%, respectively, of the total energy injected by all encounters.

246



10−1 100 101

R/Rs

10−4

10−3

10−2

10−1

100

P
(R

)R
/(
P
s
R

s
)

yt

initial profile
tidally evolved profile
tidally evolved fit
NFW equivalent

Figure F.7: Density profile P (R) of a subhalo simulated by Ref. [342] after 7 Gyr of tidal evolution;
the host, subhalo, and orbital properties are similar to those of the Milky Way-Draco system. The
initial and final profiles in the simulation are shown as solid lines, while the dashed lines show the fit
to the tidally evolved profile using Eq. (7.14). The dotted line shows the NFW profile with the same
scale parameters Rs and Ps as obtained in the fit to the evolved profile; it is not a fit to the initial
profile.

F.5 Draco’s outer density profile

We assume Draco’s density profile asymptotes to ρ ∝ r−1 at small radii as observed in halos that

form in cosmological dark matter simulations [205, 260]. However, as a subhalo of the Milky Way,

Draco’s profile at large radii is altered by tidal forces. We assume Draco’s tidally evolved density

profile follows the form

P (R) = Psy
−1(1 + y)−2[1 + (y/yt)

δ]−1, y ≡ R/Rs, (7.14)

which begins to diverge from the NFW profile near the radius ytRs. To determine the parameters yt

and δ, we analyze the Dynamical Aspects of SubHaloes (DASH) library of tidal evolution simulations

published by Ref. [342].

In this library, a host-subhalo system is parametrized by the host and subhalo concentration

parameters chost and csub, where a halo’s concentration c ≡ rvir/rs is the ratio between virial and

scale radii, and the subhalo’s relative circular orbit radius xc ≡ rc/rvir,host and circularity η.5 These

properties are determined at the time of subhalo accretion, which we assume to be roughly 10 Gyr

5See footnote 2 for definitions of rc and η.
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Figure F.8: Evolution of the parameters yt (top) and δ (bottom) of the subhalo density profile given
by Eq. (7.14) for tidal evolution simulations with host-subhalo parameters similar to those of the
Draco-Milky Way system. The median (solid curve) and 25th and 75th percentiles (dashed curves)
are plotted at each time. We extrapolate each parameter’s evolution to 10 Gyr by fitting a power
law (red line) to the full dataset; the extrapolated parameters at 10 Gyr are shown.

ago at redshift z ' 2.6 Draco’s scale radius Rs = 0.435 kpc and scale density Ps = 1.5×108 M�/kpc3

imply that csub ' 15 at z = 2. Meanwhile, various Milky Way mass models place its concentration

chost in the range 3–7 at redshift 2 [286, 505–508]. For the same mass models, kinematic data

[509, 510] put Draco on an orbit with xc ranging from 0.7 to 1.1 at accretion and η ' 0.8.

To match the Milky Way-Draco system, we consider 27 DASH simulations spanning the parameter

range 3.2 ≤ chost ≤ 6.3, 12.6 ≤ csub ≤ 20.0, 0.87 ≤ xc ≤ 1.15,7 and η = 0.8. With time units

rescaled to z = 2, these simulations run for 7 Gyr, and in Fig. F.7 we plot the density profile of the

subhalo after 7 Gyr of tidal evolution for an example set of parameters. We fit Eq. (7.14) to the

evolved density profile in each simulation, generally obtaining yt ' 5 and δ ' 3. This fit is plotted in

Fig. F.7, and to illustrate the effect of yt and δ, we also show the NFW profile with the same Rs and

Ps. Since the DASH simulations only extend to 7 Gyr, we must extrapolate the evolution of yt and

6While csub, chost, and xc exhibit significant sensitivity to redshift z through the host and subhalo virial radii, they
vary together in a way that does not alter the tidal evolution. This property is a consequence of the insensitivity of
tidal evolution to the virial radii (e.g., Chapter 5). Thus, it is not necessary to precisely tune the accretion time or
redshift; it only controls the duration of tidal evolution, which varies marginally for large changes in redshift.

7xc . 0.8 at accretion is atypical [342] and is consequently not included in the DASH simulations.
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δ, and we do so by fitting power laws to the evolution of these parameters over all 27 simulations.

Figure F.8 shows this evolution and the power-law fits; we obtain δ ' 3.9 and yt ' 4.3 at 10 Gyr.

We use the tidally altered density profile determined in this section to calculate the gamma-ray

flux profile from microhalos in Sec. 7.5.2. Note that with the chosen yt and δ, the modified profile

alters the determination of Rs and Ps described in Sec. 7.5 by less than 0.1%. Also, for simplicity,

we do not account for tidal alteration of the profile when computing the suppression of microhalo J

factors in Sec. 7.5.1. Properly accounting for the tidally evolved profile in this calculation would

be complicated because the profile changes over the course of tidal evolution. Fortunately, the

suppression of the annihilation rates within microhalos is already minimal at the radii at which

Draco’s density profile is tidally altered. Since using the modified density profile would further

reduce this suppression, using the original profile is a simplification that does not significantly impact

our results.
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