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Section: SM Written Qualifying Exam

SM-1

Consider an ideal gas in a one-dimensional channel of length L. The energy of the particle
is given by E = (p2/2m)− ε0.

(a) Show, using the classical approach, that the partition function of one particle is given
by

Q1(T, L) =
L

λ
exp(ε0/kT ) and λ =

h√
2πmkT

(b) Calculate the chemical potential of this system of N indistinguishable particles at
temperature T .

Reminder:
∫∞
0
e−x

2
dx =

√
π/2.

SM-2

Consider a white dwarf star where the number of electrons is N , the mass of the star is
M = 2Nmp where mp is the mass of the proton, and the volume of the star is V . The
pressure of an ideal Fermi gas is given by

P = 2
4π

3h3

∫ ∞
0

1

e(ε−µ)/kT + 1

(
p
∂ε

∂p

)
p2dp,

where ε is the relativistic kinetic energy given by

ε = mec
2
{[

1 + (p/mec)
2]1/2 − 1

}
.

It can be shown that the Fermi momentum is given by pF = ( 3N
8πV

)1/3h, where h is the Planck
constant.

Show that in the T = 0 limit, the radius of the star R is given by the equation

πm4
ec

5

3h3
8

∫ θF

0

sinh4 θ dθ =
α

4π

GM2

R4
, where mec sinh θF = pF .

Here me is the mass of the electron, c is the speed of light, α ' 1 is a known constant, and
G is the gravitational constant.
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Section: SM Written Qualifying Exam

SM-3

Consider the Ising model

H{σi} = −J
∑
nn

σiσj − µB
N∑
i=1

σi

where J is a constant representing the exchange coupling, nn means the nearest neighbors, µ
is the magnetic moment, B is the magnetic field, and σi assumes either the number +1 for an
”up” spin or -1 for a ”down” spin. In the context of the Bragg-Williams approximation, show
that the critical temperature Tc of the spontaneous magnetization is given by Tc = qJ/k,
where k is the Boltzmann constant and q is the number of the nearest neighbors.

SM-4

We are interested in some basic properties of the density matrix in quantum statistical
mechanics. Consider a system with Hamiltonian H. Let the set of normalized states |ψk(t)〉
be an ensemble of possible states of the system obeying the Schrodinger equation. The
density matrix is given by ρ =

∑
k

pk |ψk〉 〈ψk|.

(a) Given that the trace of ρ2 is equal to 1 for pure state and less than 1 for mixture, show

that a pure state cannot evolve into a mixture or vice versa by considering ∂Trρ2

∂t
.

(b) Show that equilibrium statistical mechanics is described by a density matrix of the
form ρ = ρ(H) by considering ∂ρ

∂t
.

SM-5

Find the distribution function (the average occupation number of a given state with an energy
ε at a temperature T ) for the species which can occupy that quantum state in arbitrary
numbers, ranging from 0 up to N . Show that in the cases of N = 1 and N =∞ one recovers
the Dirac and Bose statistics, respectively.
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Section: CM Written Qualifying Exam

CM-1

A small object of mass m slides without friction on the inner side of the surface of rotation
described by the equation z = αr4 in the three-dimensional parabolic coordinates (r, θ, z).

(a) Write down the Lagrangian of the system (don’t forget gravity), complete with the La-
grange multiplier λ implementing the above constraint, and derive the Euler-Lagrange
equations (2 pts).

(b) Consider a circular (horizontally oriented) orbit with angular momentum l. Find its
radius r0 (1 pt), angular velocity θ̇ (1 pt), and the normal reaction force N (2 pts)
which is related (but is not equal) to λ.

(c) For the above orbit, compute the ratio between the kinetic K and potential U energies,
and compare it to the prediction of the virial theorem (which may or may not be
applicable, since the overall three-dimensional force acting on the object is not central)
(2 pts).

(d) Consider small radial oscillations about the above circular orbit, expand the Lagrange
equations to first order in δr, and determine the frequency ωr of such oscillations (2
pts).

CM-2

A particle of mass m is moving in the two-dimensional rotationally invariant potential U(r) =
αr6 (assume no gravity).

(a) Using the radial r and angular θ coordinates, together with their conjugate momenta
pr and pθ, write down the Hamiltonian (1 pt) and derive the Hamilton equations (1
pt).

(b) Derive the Hamilton-Jacobi equation in terms of the principal function S(r, θ;E, l; t)
(1 pt).

(c) Use separation of variables to find the function S (2 pts) and derive the equation of
a general orbit r(θ) in the closed integral form (but don’t do the integral) (2 pt).

(d) Consider the orbit with l = 0 and allow for an adiabatic change in the potential’s
strength α(t). Find the exponent η in the resulting time dependence of the energy
E(t) ∼ α(t)η upon α(t) by computing the adiabatic invariant Jr =

∮
prdr (3 pts).
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Section: CM Written Qualifying Exam

CM-3

Consider the Hamiltonian H = 1
2I
l2 +α sin θ where θ(t), l(t), and I are the angular variable,

conjugate angular momentum, and moment of inertia, respectively.

(a) In the unperturbed case of α = 0, identify the bare action-angle variables w0(t) = ν0t
and J0 =

∮
ldθ, obeying the Poisson bracket [w0, J0] = 1 (2 pts), as well as the

corresponding energy E0(J0) and frequency ν0 = dE0/dJ0 (2 pts).

(b) Treat the term proportional to α as a perturbation and use time-independent pertur-
bation theory to compute 1st order corrections to the energy (δE) (1 pt) and frequency
(δν)(1 pt).

(c) Find, to 1st order in α, the type-II generating function S(w0, J) = w0J + S1(w0, J)
which performs a canonical transformation from w0(t), J0(t) to the exact action-angle
variables w(t) = νt and J(t) = const (2 pts).

(d) Use the above results to express θ(t) and l(t) in terms of the exact action-angle
variables with their known time dependencies (w(t) = νt and J(t) = const), thus
obtaining the solution of the equations of motion to 1st order in α. (2 pts).

CM-4

A bead of mass M is able to move without friction along a stationary horizontal rod (directed
along the x axis). In addition, a second body of mass m is attached to the first bead and
suspended below it via a massless rod of length a. This second mass and rod form a pendulum
that is able to swing in the xy-plane (where y is the vertical axis).

(a) Obtain the Lagrangian for the system of two masses.

(b) Assuming small amplitude oscillations, determine the frequency at which the pendu-
lum oscillates.
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CM-5

A bead of mass m is constrained to slide without friction on a circular hoop of radius R. The
hoop is oriented vertically and is attached to a motor that rotates it at a constant angular
speed ω, as shown in the attached figure. The bead experiences a constant gravitational
force directed downward, given as mg. Answer the following questions:

(a) Find the Lagrangian for this system using appropriate variables.

(b) Find the effective potential.

(c) Find the equilibrium points for this system. For each point, state if the point is stable
or unstable. Also state what, if any, requirements there are on the given quantities
(m;R; g;ω) for these points to exist.

(d) At least one of the points you found earlier is stable. Find the period of small
oscillations around the equilibrium point for one of the stable points. If there is more
than one, pick the one that is easiest to compute.
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EM-I-1

A two-dimensional semi-infinite, empty slot is located between x = 0 and x = a, and y > 0.
The x = 0 and x = a sides are grounded (i.e., held at vanishing electric potential), and
the side at y = 0 is held at a constant potential φ0. Find the potential inside the slot and
determine its asymptotic behavior when y � a.

Figure 1: Geometry for problem 1 (left). Geometry for problem 2 (right).

EM-I-2

A set of known constants αn parameterizes an external potential in an empty spherical
volume r < a as

φext(r, θ) =
∞∑
n=1

αn

( r
R

)n
Pn(cos θ).

Here R (R < a) is the radius of a smaller solid, grounded conducting sphere that is also
centered on the origin.

(a) Find the total electrostatic potential due to the conducting sphere and the external
field.

(b) Find the induced charge density σ on the surface of the inner conducting sphere.
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EM-I-3

A conducting spherical shell of radius a is placed inside another conducting spherical shell
of radius b > a. The center of the inner shell is displaced a distance c� a, b from the center
of the outer shell. The inner shell has a given charge Q, while the outer one is grounded.

(a) Show that, to first order in c/b, the equation describing the outer sphere, from the
center of the inner sphere, is given by

r(θ, φ) = b
(

1 +
c

b
cos θ

)
,

where θ is the angle between the radius r and the line segment joining the two centers.

(b) Assuming that the potential Φ(r, θ) in the region between the shells contains only
` = 0 and ` = 1 angular components, show that the total charge on the inner shell
determines one of the unknown coefficients.

Figure 2: Geometry for problem 3.
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EM-I-4

A thin disk of radius a carries a uniform surface charge density σ and is centered in the x, y
plane. The disk is rotating about the z axis with angular velocity ω.

(a) Calculate the direction and magnitude of the (non-zero) leading order part of the
electric field far from the disk at point (x, y, z).

(b) Calculate the non-zero leading order part of the magnetic field far from the disk at
point (x, y, z).

EM-I-5

Suppose that the electrostatic potential φ(x, y, z) in empty space were governed by the
equation

∇2φ−mφ = 0,

where m is a positive constant.

(a) Find the general solution to this equation in rectangular coordinates.

(b) For a given choice of boundary conditions, for example, on a large sphere, suppose
that there are two solutions in the interior, φ1 and φ2, that satisfy the same boundary
condition. Show that, in fact, these solutions are the same; that, in other words, any
solution is unique. For this, you may want to use Green’s First Identity:∫

V

Ψ∇2Φ dv = −
∫
V

∇Ψ · ∇Φ dv +

∮
S

Ψ∇Φ · dS.

What now is true if m < 0?
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QM-I-1

A nucleus of total angular momentum j = 1 interacts with an electron in an s-wave state.
The important states are ones with well-defined two-particle angular momentum J .

(a) What values of J are allowed?

(b) Find the Clebsch-Gordan coefficient (in Sakurai notation) 〈11
2
; 11

2
|11

2
; 3
2
3
2
〉.

(c) Find 〈11
2
; 01

2
|11

2
; 3
2
1
2
〉 and 〈11

2
; 1 -1

2
|11

2
; 3
2
, 1
2
〉. It might help to know that

J−|j,m〉 = ~
√

(j +m)(j −m+ 1)|j,m− 1〉 .

(d) Find 〈11
2
; 11

2
|01

2
; 1
2
1
2
〉 and 〈11

2
; 1 -1

2
|11

2
; 1
2
1
2
〉

(e) Find the other 4 nonzero Clebsch-Gordan coefficients. It might help to know that

〈j1j2;m1m2|j1j2; JM〉 = (−1)j1+j2−J〈j1j2;−m1 −m2|j1j2; J −M〉 .

QM-I-2

Consider a system with a pair of observable quantities A and B, whose commutation relations
with the Hamiltonian take the form:

[H,A] = igB , [H,B] = −igA ,

where g is some real constant.

(a) Write down the Heisenberg equations of motion for A and B.

(b) Suppose the expectation values of A and B at time zero are 〈A〉0 and 〈B〉0. Find the
expectation values 〈A〉 and 〈B〉 at later times t.
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QM-I-3

A particle of mass m is trapped in an infinite one-dimensional potential well of width L.

(a) The particle is in the ground state of the potential when the width of the well is
suddenly increased to 2L. What is the probability that the particle will be in the
ground state of the expanded well? (4 points)

(b) Assume that the particle is in the ground state of the expanded well. The walls of
the well are suddenly dissolved and the particle becomes free. Find the momentum
probability distribution of the particle after it is freed. (6 points)

You may find the following indefinite integral useful for this problem:∫
sin (ax) sin (bx)dx =

sin (a− b)x
2(a− b)

− sin (a+ b)x

2(a+ b)

QM-I-4

An element of the rotation group can be written as the matrix D(R(~e, θ)) = e−i~e·
~Jθ, where ~J

are the three angular momentum generators, and ~e, θ are the axis and angle of the rotation.

Give the elements of the rotation group for a rotation of angle θ around the z-axis that
describe

(a) a spin 0 particle

(b) a spin 1
2

particle.

(c) the combined system of two spin 1
2

particles, and prove explicitly they satisfy the rule
for how a direct product representation decomposes into irreducible representations.

QM-I-5

Compute the eigenstates and eigenvalues of the one-dimensional harmonic oscillator with
Hamiltonian H = p2

2m
+ kx2

2
. Transform to creation and annihilation operators, in which

[a, a†] = 1. Find the states of the system in terms of the operators acting on the vacuum
state. Give the energy eigenvalues of these states, and label the values of any parameters.
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EM-II-1

Consider a cold collisional plasma with a scalar permittivity given by

ε(ω) = 1−
ω2
p

ω(ω + iν)
,

where ν is the electron-ion collision rate, ω is the frequency of oscillation, and ωp is the
plasma frequency.

(a) Write down the Fourier transformed forms of Faraday’s law and Ampere’s law (in

terms of ω and ~k). Assume all of the effects of permittivity are swept into ε(ω) such
that Dj = ε(ω)δjkEk.

(b) Obtain the dispersion relation for electrostatic waves (i.e., longitudinal waves) in the
collisional plasma.

(c) If an initial spatial longitudinal wave existed in the plasma with real wavevector ~k,
what would be the time dependence of this mode and what is the primary effect of
the collision rate ν?

EM-II-2

A parallel-plate capacitor is made of circular plates of radius a separated by a distance d.
The voltage across the plates has the time dependence V = V0 cos(ωt) (supplied by long,
narrow, zero-resistance wires). Assume that d � a � c/ω, so that fringe and retardation
effects can be neglected. (In other words, everything is instantaneous and we are interested
in the fields deep inside the capacitor, near the symmetry axis.)

(a) Use Maxwell’s equations and symmetry arguments to determine the electric and
magnetic fields in the region in between the plates as functions of time.

(b) Find the time-varying charge on the plates.

(c) Using Ampere’s law, find the magnetic field in the region outside the capacitor (think
of the previous region, but on the other side of each plate). Relate the discontinuity
in the magnetic field across the plates to the current density within the plates.
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EM-II-3

Suppose that in an electron-positron collider the following event is observed

e+ + e− → π0 + π0

with the electron and positron having equal energy Ee and opposite momentum. The elec-
tron’s mass is denoted by me and pion’s mass is labeled as mπ. The pions of course emerge
from the event with opposite momentum, equal energy, and some Lorentz factor γπ.

The two pions each subsequently decay into a pair of gamma rays

π0 → γ1 + γ2,

which is the most common decay mode. In the laboratory frame the photon energies are E1

and E2.

(a) Expressed in terms of the various parameters (i.e., combinations of some or all of Ee,
me, mπ), what is the minimum possible photon energy E1 and the maximum possible
photon energy E2 measured in the laboratory frame?

(b) Given that mπ = 135 MeV/c2, if the electron and positron both have energy of
Ee = 351 MeV/c2, what are the numerical values of E1 and E2?

EM-II-4

The goal of this problem is to prove that transverse electromagnetic (TEM) waves cannot
occur in a hollow wave guide composed of a perfect conductor. Consider a monochromatic
wave propagating in a hollow pipe of arbitrary but uniform (in x) cross sectional shape, with
the electric field of the form

~E(x, y, z, t) = ~E0(y, z)e
i(kx−ωt),

and similar form for ~B(x, y, z, t). Assume that a TEM wave exists (Ex = Bx = 0).

(a) What is the boundary condition for ~E at the inner wall of the wave guide?

(b) Use Gauss’s law and Faraday’s law to show that ~E0 has zero divergence and zero curl.

(c) Show that the corresponding scalar potential satisfies Laplace’s equation.

(d) Use (a) and (c) to show that ~E0 is zero, and hence no wave at all.
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EM-II-5

The general expression for the spectral and angular distribution of energy radiated from a
relativistic electron is

dW

dωdΩ
=
e2ω2

4π2c

∣∣∣∣∫ dt′ ~n× (~n× ~β(t′)) exp[iω(t′ − ~n · ~x(t′)/c)]

∣∣∣∣2 .
Let the observation direction be ~n. Adopt as well two real orthonormal vectors ~eA and ~eB

that are also orthogonal to ~n. These three vectors make up an orthonormal triad and with
them the three-dimensional identity can be decomposed

δij = ninj + eAi e
A
j + eBi e

B
j .

This decomposition is useful for handling the vector ~n×(~n×~β(t′)) (hint: consider βi = δijβj).

Assume that a relativistic electron undergoes an abrupt collision with a heavy (fixed) nucleus

and experiences a change in its velocity from ~β′ to ~β′′ (both constant). At low frequencies ω
the Bremsstrahlung spectrum can be treated like transition radiation.

(a) Show that the spectrum has the form

dW

dωdΩ
=

e2

4π2c

∑
m=A,B

∣∣∣∣∣~em ·
(

C ~β′′

1− ~n · ~β′′
+

D~β′

1− ~n · ~β′

)∣∣∣∣∣
2

,

and find the unknown coefficients C and D.

(b) What role do the unit vectors ~eA and ~eB play?

(c) Explain clearly what is being coherently summed and what is being incoherently
summed.
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QM-II-1

Two identical spin 1/2 fermions move in one dimension under the influence of an infinite-wall
potential V =∞ for x < 0, x > L, and V = 0 for 0 ≤ x ≤ L.

(a) Write the ground state wave function and the ground state energy when the two
particles are constrained to a triplet spin state (ortho state).

(b) Repeat (a) when they are in a singlet spin state (para state).

(c) Let us now suppose that the two particles interact mutually via very short range
attractive potential that can be approximated by V = −λδ(x1−x2), λ > 0. Assuming
that perturbation theory is valid even with such a singular potential, discuss semi-
quantitatively what happens to the energy levels obtained in (a), (b).

QM-II-2

Show that the slow turn on of perturbation V = V0e
ηt can generate contributions in the

transition probability from the second order term. Discuss the reason and compare the
strength of first order to second order corrections.

QM-II-3

Consider a model of the proton in which it is a spherical particle that has a uniform surface
charge distribution and a radius R.

(a) Write down the potential of the proton in this model as a function of the radius from
its center (r) and its total charge (q). (2 points)

(b) Write down the effect of this model as a perturbation to the original Hydrogen Hamil-
tonian, which assumes the proton is a point-like particle. (2 points)

(c) Find the correction in the ground state energy of hydrogen due to the finite size of
the proton in this model. You may assume that R� a0 where a0 is the Bohr radius.
You may express your answer in terms of the Bohr radius (6 points).

Dept. Physics & Astronomy 1 May 8-11, 2015



Section: QM-II Written Qualifying Exam

QM-II-4

A sample of spin-1/2 particles is placed in a constant magnetic field and a much weaker
perpendicular oscillating magnetic field. Each spin is governed by the Hamiltonian

H = ~
[
b0
2
σz + b1σxcos(ωt)

]
,

where ω, b0, and b1 are positive constants with b1 � b0.

(a) Suppose at t = 0 a particle is in the z-spin “down” state. Use first-order perturbation
theory to find the probability that after time t the particle is found in the z-spin “up”
state.

(b) Suppose ~ω is very close ~b0, the unperturbed energy difference between the up and
down states. Keep the largest terms to simplify the answer you obtained above.

(c) For how long, roughly, does the probability increase without oscillating? Do you
obtain a constant transition rate during this time? If not, how do you reconcile your
result with the Fermi’s golden rule?

QM-II-5

Two identical spin-1
2

particles are trapped in the same infinite potential well of width L.
They experience a contact spin-interaction as follows:

H ′ = Aδ(x1 − x2)S1 · S2

where A is a constant, xi are the positions of the two particles, and Si are their spin vectors.

(a) Assume A = 0 and write down all the wave functions and energies for the ground and
first excited states. (5 points)

(b) Assume now that A > 0. Find the correction to the ground state energy using first
order perturbation theory. (5 points)

You may find the following indefinite integral useful for this problem:

∫
sin4 (x)dx =

1

32
sin (4x)− 1

4
sin (2x) +

3

8
x
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AS-I-1

A star has uniform opacity κ, uniform β ≡ Pgas/P , and a convective core outside of which
there is no thermonuclear energy generation.

(a) Show that the mass fraction of the core is

Mc

M
=

γad
4(γad − 1)(1− β)

κL

4πcGM

with γad the adiabatic value.

AS-I-2

Completely black (absorbing) dust grains of average radius 1 micron are heated to 3000 K
by an active galactic nucleus of central (dark) mass 107 M�. The heat source is the inner
accretion disk of radial extent ∼ 0− 1 AU from which we detect soft X-rays with spectrum
approximately a 106 K black body. The emitting dust grains see the entire ring at optical
depth τ = 15 around peak emission wavelength.

(a) Show that the ring emits 4× 1039 W.

(b) Show that at 1 pc distance each grain absorbs 3.2× 10−13 W.

(c) Show that a heated grain emits 2.1× 10−15 W.

(d) Show that the average orbital radius of the dust grain is ∼ 12 pc.

(e) Assuming 100× as much mass within the grain’s orbit than in the central mass, and
that the grain sublimates on average in 1000 years, how many orbits does the grain
make before sublimating?

AS-I-3

From writing the stellar structure equations in Lagrangian form, homology shows that L ∝
M3 and R∗ ∝M

n−1
n+3 for energy generation dF = qoρT

ndM .

(a) Use solar values to calculate Teff in K at the lowest mass end M = 0.1M� of the stellar
main sequence where 1H thermonuclear fusion can still occur. Use the appropriate
value of n for the hydrogen fusion rate.
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(b) Assuming solar composition, what is the approximate main sequence lifetime of this
star, what is its lifetime on the horizontal branch, and what remnant does it leave?

AS-I-4

The UV spectrum from an accretion disk around a Galactic micro-quasar shows the He+

Lyman edge at 22.8 nm wavelength across which flux jumps 4× from shorter to longer
wavelengths. Assume LTE and that the disk is pure helium. Ignore stimulated emission,
and assume that opacity is due only to bound-free absorption.

(a) Considering the relevant bound-free opacities that scale ∝ λ−3n−5 for level n, show
that this part of the accretion disk has T ∼ 64, 000 K.

(b) A model predicts that this region is ∼ 1/4 AU from the micro-quasar. What is the
maximum mass of the micro-quasar that still allows this gas to escape from the system
(moving at up to three times rms gas velocity)? Assume no wind and negligible mass
in the accretion disk.

AS-I-5

A spherical cloud of radius R and uniform density ρ lies a distance D from an observer. The
cloud subtends angle θo on sky. The attenuation coefficient κ is constant both within the
cloud and with frequency. Assume that all rays through the cloud are parallel.

(a) Show that the optical depth through the cloud as function of θ < θo is given by

τ(θ) = 2l(θ)κρ = τo
√

1− (tan θ/ tan θo)2

(b) Show that the angular radius of the optically thick cloud, θ1, is given by

θ1 = θo
√

1− (2κρR)−2
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Potentially Useful Constants

Name Symbol Value Unit

Gravitational constant G, κ 6.67259 · 10−11 m3kg−1s−2

Speed of light in vacuum c 2.99792458 · 108 m/s (def)

Planck’s constant h 6.6260755 · 10−34 Js
Dirac’s constant ~ = h/2π 1.0545727 · 10−34 Js
Rydberg’s constant Ry 13.595 eV
Reduced mass of the H-atom µH 9.1045755 · 10−31 kg

Stefan-Boltzmann’s constant σ 5.67032 · 10−8 Wm−2K−4

Boltzmann’s constant kB 1.3806 · 10−23 J K−1

Wien’s constant kW 2.8978 · 10−3 mK
Molar gasconstant R 8.31441 J·mol−1·K−1

Avogadro’s constant NA 6.0221367 · 1023 mol−1

Boltzmann’s constant k = R/NA 1.380658 · 10−23 J/K

Electron mass me 9.1093897 · 10−31 kg
Proton mass mp 1.6726231 · 10−27 kg
Neutron mass mn 1.674954 · 10−27 kg
Elementary mass unit mu = 1

12
m(126C) 1.6605656 · 10−27 kg

Diameter of the Sun D� 1392 · 106 m
Mass of the Sun M� 1.989 · 1030 kg
Radius of Earth RA 6.378 · 106 m
Mass of Earth MA 5.976 · 1024 kg
Earth orbital period Tropical year 365.24219879 days
Astronomical unit AU 1.4959787066 · 1011 m
Light year lj 9.4605 · 1015 m
Parsec pc 3.0857 · 1016 m
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AS-II-1

(a) Starting from the first Friedmann equation and the First Law of Thermodynamics,
derive an expression for the Hubble parameter H(a) for a universe containing matter,
radiation, and an additional substance with an equation of state p = wρ, where
w < −1/3 and w is a slowly varying function of time, which for the purpose of
integration you can take to be constant. Your final expression should only depend on
H0, w, the present-day ratios of the different densities to the critical density, and a.
Do not assume that the Universe is flat. (4 pts.)

(b) For the universe described above, derive expressions for the scale factor a(t) in the
limit of large a for −1/3 > w > −1, w = −1 and w < −1. In a few sentences, discuss
the ultimate fate of this universe in these three scenarios. (6 pts.)

AS-II-2

The tensor-to-scalar ratio r is related to the inflationary potential V (φ) via the slow-roll
parameter εV : r ' 16εV , where

εV =
m2

Pl

16π

[
V ′(φ)

V (φ)

]2
is evaluated when the perturbation mode exits the horizon during inflation. The Planck

mass is mPl = 1.221× 1019 GeV =
√

~c
G

.

Consider slow-roll inflation with a quadratic inflationary potential: V (φ) = (1/2)m2φ2.

(a) What is the value of φ when inflation ends? (2 pts.)

(b) If inflation ends when the scale factor is ae, derive the following expression for φ as a
function of a during inflation (4 pts):

φ =

√
m2

Pl

2π

(
ln
[ae
a

]
+

1

2

)
.

(c) Assume that the Universe became radiation-dominated immediately after inflation
ended and that the reheat temperature was 1014 GeV. What is r for a perturbation
mode with k = 0.002 Mpc−1? (4 pts.)
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AS-II-3

Consider the formation of atomic hydrogen in the early Universe:

p+ + e− ←→ H0 + γ.

The binding energy of atomic hydrogen is B = 13.6 eV, and gH = 4, gp = 2, and ge = 2.
The ionization fraction Xe is defined as the number density of free electrons (ne) divided by
the total number density of electrons (ne + nH).

(a) Derive the Saha equation for the ratio

X2
e

1−Xe

in terms of the mass of the electron, the temperature, the binding energy of hydrogen,
and the baryon-to-photon ratio (η ≡ nb/nγ). (7 pts.)

(b) The binding energy of 13.6 eV is equivalent to a temperature of about 1.5 × 105

K. Yet, in the early universe, recombination occurred (Xe < 0.1) only after the
temperature dropped to T ' 3500 K. What cosmological parameter is responsible
for this delay? Show this fact mathematically using the Saha equation and provide a
physical explanation. (3 pts.)

Useful information: In natural units, the number density of a nonrelativistic particle
species that is in thermodynamic equilibrium at a temperature T is

ni = gi

(
miT

2π

)3/2

e−mi/T ,

where gi is the internal degrees of freedom and mi is the mass of the particle. The number
density of photons is

nγ = 2
1.202

π2
T 3.
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AS-II-4
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Figure 1: Matter power spectrum for use in problem 4.

This figure shows a matter power spectrum Pδ(k) in a universe with Ωrh
2 = 4.15× 10−5.

(a) Estimate Ωmh
2 for the universe that has this matter power spectrum. (5 pts)

(b) Assume that this universe has the same Hubble constant (H0 = 68 km/s/Mpc), dark
energy density (Ωde=0.7), and primordial curvature power spectrum Pζ(k) as our
universe. Would structure form earlier or later in this universe as compared to our
universe? Why? (2 pts.)

(c) Again, assume that this universe has the same H0, Ωde, and Pζ(k) as our universe.
Qualitatively describe how the anisotropy spectrum of the cosmic microwave back-
ground in this Universe would differ from the anisotropy spectrum in our Universe.
At least two distinct changes in the anisotropy spectrum must be identified for full
credit, and sketches are highly encouraged. (3 pts.)
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AS-II-5

Consider a flat universe with Ωm = 0.3, Ωde = 0.7, and Ωr = 9.0× 10−5. Assume that dark
energy has an equation of state parameter w = −1, and take the Hubble constant to be
H0 = 68 km/s/Mpc.

(a) What is the redshift of matter-radiation equality? What is the redshift of dark energy-
matter equality? (2 pts.)

(b) Estimate the angular size of the particle horizon at a redshift of 1090 by keeping only
the dominant energy component during radiation domination, matter domination,
and dark energy domination, respectively. (6 pts.)

(c) Discuss how your result in part (b) provides motivation for inflation. (2 pts.)
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Potentially Useful Constants

c = 2.998× 1010 cm/s

kB = 8.62× 10−5 eV/K

~ = 6.582× 10−16 eV sec

~ = 1.973× 10−5 eV cm/c

mPl = 1.221× 1019 GeV =

√
~c
G

T0 = 2.725 K = 2.348× 10−4 eV

1 Mpc = 3.086× 1024 cm

H0 = 100h km/s/Mpc

H0 = 3.24h× 10−18 s−1

H0/c = 0.000334hMpc−1
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