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CM-1

A mass m is positioned on a horizontal frictionless z — ¥ plane and attached
to the vertices of an equilateral triangle (lying in the same plane) by three
massless springs. Two of the springs have elastic constant k; while the third
has k5. Assume that the springs can be stretched or compressed but cannot
be bent. None of the springs is deformed when the mass is in equilibrium at
the geometrical center of the triangle.

(a) Expand the Hamiltonian to second order in terms of the small deviations
about the equilibrium position and find the frequencies of the normal
modes.

(b) Find the eigenvectors corresponding to these normal modes.

(c) What happens to the eigenvectors in the limit of ky = ks?

Hint: Choose the coordinate system on the basis of the symmetry properties
of the Hamiltonian.

CM-2

A particle of mass m slides without friction on the inner surface of a cone
that has an opening angle of 8. The cone is standing vertically on its apex.

(a) Assuming uniform gravity and using standard spherical coordinates
r,0,¢, write down the Hamiltonian of the system.

(b) Assuming that the angle & undergoes a slow change, find (approxi-
mately) the dependence of the particle’s energy E upon 6 under the
condition tan @ > gm!/21/E%? (i.e., very eccentric orbits on the cone),
where [ is the particle’s angular momentum with respect to the vertical
axis.

Hint: Compute the corresponding adiabatic invariant.



CM-3

The Hamiltonian of a (pseudo) relativistic one-dimensional oscillator is given

by
22

MWz
H = y/2p? + m2ct + B (1)

Expand this expression in powers of p/mc and compute the lowest order
relativistic correction dw to the frequency w of the ordinary (non-relativistic)
harmonic oscillator as a function of the system’s energy E.

Hint: Introduce action-angle variables, solve the Oth order (non-relativistic)
problem, and then use the 1st order classical perturbation theory.

CM-4

Consider a classical particle of mass m that is trapped in a one-dimensional
quartic potential well

1
U(z) = Zk z?,

where k is a real-valued constant with appropriate units. From the symmetry
of the well it is obvious that a particle that starts from rest at some point
x = a will undergo periodic motion around the origin.

(a) Find the period of this oscillation exactly.

(b) Interpret your results in the limit where a gets very small or very large.

You may use the following definite integral without proof

= 1.31103 a.



CM-5

Consider a free particle confined to a finite interval along the z axis (a one-
dimensional box) moving rapidly and bouncing back and forth between the
ends of the interval (i.e., box walls). Suppose that the particle begins with
energy Fy and the walls are very slowly brought toward each other, starting
from a distance Lq apart.

(a) Find the energy F of the particle in terms of the parameters given above
when the box has width L.

(b) The one-dimensional analog of pressure is the time-averaged force Fon
a wall, where the average is over a reasonably long time (one period
is sufficient for periodic motion). Find F when the box has width L.
Hint: relate the average force exerted by the particle on a wall to the
change in its momentum during a collision with the wall.

(c) In the adiabatic compression of a gas in three dimensions, P V7 is a con-
stant for some constant -y. In our one-dimensional one-particle “gas,”
FL7 is essentially constant if the change in L is slow enough. Find ~y
for our case.

SM-1

Consider a system of N classical distinguishable harmonic oscillators where the
Hamiltonian is given by

N(pl )
P; 1 2 2
H = E —+—Moq,

thm 2 q'J

(a) Calculatez (N, E), the total number of microstates with energy less or equal to E.

(b) Based on the calculated= (N, E), show thatS (N ,E) = Nl{1+ |n(N§ H
9

Reminder:Inn!=niInn-n; The volume of n-dim hypersphere of radius R is given by
n/2 n/2
VA
R" =

(n/2) (n/2)r(n/2)

R" and r(v)=(v-1)!

SM-2
A particle can exist in any of the N equidistant states with energies ¢, 2¢, 3¢,..., N¢.

(a) Compute its average energy (E) when it is in equilibrium with the thermal reservoir
of temperature T.

(b) Find the value of (E) inthe extreme T — 0 and T — o limits.



SM-3

The eigenstate of a particle in a box is labeled by |€> and its associated energy is & . For

N such non-interacting particles in the box of volume V and at temperature T, the
partition function is given by

. ( )

Quv.T)= X ot e AT e |
i)} l=)

Here, g =1/(k,T), n,, is the number of particles in the single-particle state |z ), {n, ,}

is a set of n. numbers and the summation is over all possible set of {n.} where

&

> n,=N,a condition indicated by the prime, and g{n‘£>} is the number of quantum
B

states of the N particles corresponding to the set {n,} For indistinguishable particles,
the only possible values for g{nM} are either O or 1.

(a) Show that the grand partition function @ (x,V,T) is given by

( )
Q(uV.T)=]] LZ exp(ﬂ(u —8)n8>)J

&) ey
Here, the summation is over all n., values compatible with g{n, }=1. For instance,

n,=0orl is compatible with g{nM}: 1 for fermions.

&

(b) Now consider a hypothetical type of particles where N,y values compatible with

g{n‘g>} =1 are0, 1, 2. Show that the average value of URY namely the average occupation

number of state |5>, is given by

_ 1 ~ 3
exp[B(s-u)]-1 exp[3B(s-u)]-1

<n >
l#)

&

SM-4

If the atoms in a single square layer of side length L are on a square lattice (one atom per
lattice site) and connected by effective spring constant x, mechanical vibrations around
their equilibrium positions give rise to normal modes called phonons. The atoms can
move only within the plane. Invoke the Debye approximation that the frequency of
oscillation is proportional to wave number (k) =ck (c is the speed of sound in the
material and is assumed to be the same for both the longitudinal and the transverse
modes) up to some cutoff value of k_ (assume this is given) that enforces the correct

number of modes for the system (o, = ck, is the Debye frequency).



(a) Calculate the number of modes or “states” up to frequency » and give the expression
of the total number of modes in terms of L and o, .

(b) Calculate the density of modes D () .

(c) From D(w) calculate the internal energy stored in all of the modes making the
approximation that the temperature is very low compared to the Debye frequency (
kT <<Tw,).

(d) Calculate the specific heat C,, of the two-dimensional phonons, and speculate on the
temperature dependence in one-dimensional crystals.

SM-5

Consider the following simple model of ferromagnetism, introduced by Weiss
who postulated that the driving magnetic field within ferromagnets is given
by . . .

Bdrivin_q =H+ )\M:
where H is the magnetic field and M is the magnetization, and A > 1.
We want to calculate the thermal average of the intrinsic magnetic moment
(f). Let us use the quantum mechanical distribution by supposing that

the atomic magnetic moment g is either lined up parallel or anti-parallel to
Briving (Which defines the z axis).

(a) Show that
(pz) = p(tanhz),

where tanh is hyperbolic tangent function and x = %(H + AM), with
k being the Boltzmann constant.

(b) Show that there is a critical temperature (called the Curie temperature)

given by T, = % (where n is the density of atomic magnetic moments)
such that for temperature 7' < 7,, a permanent magnetization can

exist.

(c) Show that for sufficiently high temperature (7' > T.), the magnetic
susceptibility is given by

1T
AT —-T,

SIS



EMI-1

(a) Find the total charge, the dipole moment and the quadrupole moment

of the charge density p(7) = —d - V(7) where d is a constant vector.
(For the dipole moment use the expression [(dr)7p(7).)

(b) Repeat the calculation for the dipole moment by using the expression
for multipole moments given by

pim = [y 5T Y0 0,006,

where Y}, are the spherical harmonics.

(Recall that py,, yields the dipole moment 7 as

1 )
P11 = —E(Pm - %Py),
P10 = Pz,

Il ,
P1-1 = ﬁ(px + ipy).

Note that essentially all you need to know are the qualitative features
of Yi,: e.g., rYg is proportional to 2.)

EMI-2

(a) Consider a localized charge distribution with total charge e and electric
dipole moment cf, etc, at the origin. The interaction energy of this
charge distribution with an additional point charge e; located at a
point 7 lying far outside the charge distribution is given by

eer - eqr

T T

Use this expression to ﬁnd the interaction energy for a dipole-dipole
interaction with dipole dl at the origin and dipole dg at 7 (at zero
temperature).

(b) Compute the thermal averaged interaction energy between the two
dipoles in the high temperature limit.



EMI-3

Consider applying the Green’s function technique to the electrostatic problem
for a point charge (at ' with 2 > 0) outside a uniform dielectric (with
dielectric constant € = constant) occupying the semi-infinite region 2z < 0,
while the region 2z > 0 is a vacuum.
Assume that you have successfully calculated the Green’s function to be
given, for z > 0, by
G(ﬁ,ﬁ): 1ﬁ_e—1 1%,
|F—7r| e+1|7—7r"

where 7/ = (2., 2") is the image point of r’ with 2/ = —2/. Finally recall
that the total energy of a charge distribution in the presence of the dielectric

medium
1 5/ -,

B=] / (dr) (dr)p(PGF, ) p(r),

includes the mutual interactions of the charges.

(a) Find the force of attraction between a point charge (of charge e at 7%
with 2o = 0,49 = 0,29 > 0) and the dielectric medium.

(b) Replace the dielectric medium by a grounded conductor. Find the sur-
face charge density induced on the conductor.

EMI-4

Consider three straight, infinitely long, parallel thin wires lying in a plane.
Let the spacing between adjacent wires be d and assume that each wire
carries a current / flowing in the same direction.

(a) Calculate the location of the two zeros in the magnetic field.

(b) If the middle wire is rigidly displaced a very small distance z (z <
d) while the other two wires are held fixed, describe qualitatively the
subsequent motion of the middle wire. Note: consider displacements z
in the plane of the wires as well as off of the plane.



EMI-5

Consider a point charge in the exterior of a conducting or dielectric sphere.

(a) Easy part (20%): Use the method of images to find the electrostatic
potential induced by a point charge ¢ held at a distance r > R from
the center of a uniform conducting sphere of radius R. Assume the
latter has a total charge @ and is insulated from any source of charge.

(b) Less-easy part (40%): The same method can be applied if the sphere
is now dielectric with dielectric constant e, but it is much harder to
implement. Show an alternative way to solve the problem.

(c) Crucial question (40%): Connect the two methods above by explaining
how you would obtain the image charge distribution inside the sphere
from your solution of part (b).

QMI-1

(a) Write the quantum Hamiltonian for a particle of charge e and mass m subjected to
the vector and scalar potentials of a static electromagnetic field. (Use i = ¢ = 1
throughout this problem.)

(b) Write the gauge transformation of a static electromagnetic potential, and show how
the Schroedinger wavefunction of the Hamiltonian in part (a) transforms under this
gauge transformation.

(¢) Use the monopole potential with magnetic charge e,,,

(1l — ) -~
AI:e( COS)qb

- for the northern hemisphere 8 < ™ — ¢,
rsind

m(1 6) » .
Al = Ae(J'r—c;)s) ¢  for the southern hemisphere 6 > ¢,
7 sin

which has B = <7 everywhere on the sphere, to compute a quantization condition
on the magnetic charge.

QMI-2

Consider two identical linear oscillators with spring constant &£. The interaction potential
is given by H' = cxyxo, where 1 and z, are the oscillator variables. (Use h = ¢ = 1
throughout this problem.)

(a) Write the full Hamiltonian of this system with commutation relations [z;, p;| = id;;.

(b) Find the exact energy eigenvalues.



QMI-3

(a) Use the rule for addition of angular momentum to decompose the tensor product
of two spin % representations of the rotation group into a direct sum of irreducible

representations, and give their dimensions. (Use i = ¢ = 1 throughout this problem.)

(b) Use Clebsch Gordan coefficients (mj,ms|j, m) to express the eigenstates of the irre-
ducible representations in the direct sum in part (a) as linear combinations of the
eigenstates of the tensor product.

QMI-4

A system is in a state |¥) with an energy uncertainty

AE =/ (| (H - HP|9),
where H = (V| H |T).

(a) The state evolves for a short time A¢. Find the probability, to second order in At, that
the system is still in the state |¥) at time At.

(b) Let the system be a spin-1/2 particle with
H = o,

and
[T) = |S,+) -

What is the probability of that the system will still be found in state |¥) at an arbitrary
later time ¢7

(c) Let t = At and expand the result of part (b) to second order in At. Show that your
result from part (a) is correct for this specific example.

QMI-5
Consider two interacting particles. The first particle (1) has spin-1 and the second particle
(2) has spin-1/2.

(a) What are the possible values for the total angular momentum of the two particle system?
How many independent (spin) states does the system have?

(b) Suppose the two particles interact via the Hamiltonian

a

thz

— — b
S1-5+ ?_L(Slz + S3,) -

Find all the eigenvalues of the Hamiltonian.



EMII-1

In the electric dipole approximation the angular distribution of radiated
power is

dP — — —

= éRe [rzﬁ (B x B*)] - ékﬂ(ﬁ w dy x 2,

for a harmonically oscillating dipole with a complex vector amplitude d and
with k =w/c.

Assume that a plane wave of light with frequency w is propagating in the z
direction (i.e., along €3 unit vector). Let the light scatter from an electron
with mass m and charge —e.

(a) Assume the light is unpolarized. Pick a representation for the electric
field and discuss how the lack of polarization affects the calculation of
scattered power.

(b) Let @ be the polar angle relative to the 2 axis and let ¢ be an azimuthal
angle around this axis. Calculate the angular dependence of scattered
power, dP/dQ).

(c) Without necessarily doing a detailed calculation, explain the nature of

the polarization of the scattered light and how it varies as a function
of 6.

EMII-2

A relativistic electron with Lorentz factor vy strikes a stationary electron.
After the event the two electrons are observed to emerge from the collision
along with a newly created muon-antimuon pair,

6_—i—6_—>€_+6_—|—ﬂ++ﬂ_.

(a) Assume the pair creation reaction is just at threshold. Calculate an
expression for the required value of the Lorentz factor -y in terms of the
muon m, and electron m, masses.

(b) Find an expression for the Lorentz factor v of the four emerging particles
in terms of m, and me.

(c) Given that m, = 105.7 MeV and m, = 0.5110 MeV, compute -y and +y'.



EMII-3

A stationary magnetlc dlpole = mk is situated above an mﬁnlte uniform
surface current, K = K7 in the laboratory frame S, where i and k are unit
vectors pointing along the +x and +z directions, respectively.

Suppose that the surface current consists of a uniform surface charge o,
moving at velocity 7 = i, Suppose further that the magnetic dipole consists
of a uniform line charge A, circulating at speed v (same v) around a square
loop of side length I, with two sides parallel to the x-axis and the other two
parallel to the y-axis.

Examine this configuration from the point of view of the frame S’ moving in
the +x direction at speed v (relative to the laboratory frame). Show that in
the S’ frame the current loop carries an electric dipole moment, and calculate
the resulting torque on the electric dipole.

EMII-4

The spectral-angular distribution of energy radiated by a single relativistic
electron can be computed from

dw e2u?

dwdQ  4m2c

/ 4t x (7 x B) expliw(t — 7 - F(¢) /o)

Consider a nucleus that undergoes double beta decay. Assume two relativistic
electrons simultaneously emerge from the nucleus and fly away in opposite
directions with the same energy.

Let one electron have velocity 8 = (0,0,8) and position vector Z;(t') =

(0,0,¢68t") for ' > 0. The other electron’s velocity Eg and position vector
Z> are similar but with the sign of 5 reversed. Let the observer be at @7 =
(sinf,0,cos ).

(a) Calculate dW/dwdS2 to find the radiative correction to double beta decay.

(b) Compare the result to that if only one electron appeared (regular beta
decay).

(c) Consider the nonrelativistic limit of part (a) (i.e., K — 1). What does
the 8 and angular dependence imply in terms of multipolar radiation?



EMII-5

A particle moves at relativistic velocity v = Sc along the x axis in the lab
frame. In its own rest frame (primed frame) it emits photons with an angular

distribution -
YN _ g &
= 10.4),
where 6’ is the angle of emission relative to the ' axis, and ¢’ is the azimuthal

angle about the z’ axis.

(a) Use the Lorentz transformation of the wave vector £'* of an emitted
photon to show that, for a photon emitted at the angle &' in the primed
frame, the angle of emission in the laboratory frame satisfies

o — ZEL—B.
" 1—fBcosh’
(b) Use this result to show that the distribution of photons in the laboratory
frame is - 10.8)
—=(0,0) = — . =
dQ v2(1 — BeosB)

(c) Finally, assume that the angular distribution of photon number is isotropic
in the primed frame. Furthermore, assume that the Lorentz factor con-
necting the primed frame and the lab frame is large, v > 1. Evaluate
in terms of y the ratio between the forward (6 = 0) and reverse (8 = )
angular distributions of photons as seen in the lab frame.



QMII-1

Consider the excited level n = 2 of a helium ion (a hydrogen-like system with one electron and
two protons). We apply a weak uniform electric field in the 2 direction, with the perturbation
operator V = —ez|E|.

(a) Use symmetries to argue that 14 of the 16 matrix elements of V' vanish.

(b) Use degenerate perturbation theory to compute the zeroth-order eigenstates and first-
order energy shifts. You might need:

1 3 3 ;
Y9 = —, Y=4/—cosf, Yi'=+4/_—(sinf)e*
47 8w

A’
% Zr 7N\
_ (£ g _ 2T\ o~ 2r/(2a0) _ (2N 4T 7))
Rgo(?”) (20,0) < - ) € y Rgl (T) an \@ao €

QMII-2

An electron is subjected to a spin-orbit interaction

1 1dv;
-~ 2m2c2r dr

(L-8)

with a shielded Coulomb potential V., = —Vhe ™" /(ur). Assume this is sufficiently close to the
Coulomb problem for small radii that you can use hydrogen wavefunctions for the unperturbed
problem.

(a) Compute the energy shift of the n = 2, £ = 1 state for spin up (j = £ + 1/2), leaving the
radial integral I, unperformed.

(b) Now perform the radial integral. You may use Ry from above. Give the energy shift
in the limit pag < 1, using an expression for the ratio V5/p from comparing to the
Coulomb problem.



QMII-3

Consider a nucleus in a magnetic field with both a constant field in the 2 direction and
an oscillating field in the zy plane, giving rise to an unperturbed Hamiltonian Hy and a
perturbation V (t):

m-n(y ) vo-5(, %) W

with Fy and F; constant. Assume that the frequency is tuned to near resonance: w & wis.

(a) If the nuclear spin is up at time ¢ = 0, compute the probability that the nucleus has spin
down at time ¢ as a function of time.
(b) At what time ¢; are the probabilities of spin up and spin down equal? Semiclassically,

where is this spin pointing?

You might use

g d Udmnt
zhacn(t) = ZVnme Crnkb) »

QMII-4

Consider a one dimensional chain of N regularly spaced atoms. Suppose each positively
charged atomic core acts on the electron as a delta function well. This situation can be
described by a periodic potential V (z), such that V(z + a) = V(z), of delta function wells:

N-1
Viz) = —a Z 5(z — ja)

(a “Dirac comb”). In between the delta functions, V(z) =0 for 0 < z < a.

Imposing periodic boundary conditions for the wavefunction, ¥(z = 0) = ¥(z = Na), esti-
mate the allowed energies and find solutions for the wavefunction. Describe the symmetry
considerations used in your derivation.



QMII-5
Use the first Born approximation to answer the following questions:
(a) Find the differential and total scattering cross sections for an incident particle of mass
m and momentum k for a Dirac potential given as:
V(r) = g¢5°(r),
where ¢ is a positive real constant with appropriate units.
(b) Now consider the following variation:
V(r) = g(63(r + a2) + 83(r — a?)),

where a is a positive real constant with appropriate units. Using physical arguments
only, find the total scattering cross sections for the two separate the cases where ak < 1
and ak > 1. Provide a physical interpretation of these two cases.

(c) Calculate the differential scattering cross section for the potential in (b) and show that
the total cross-section has the asymptotic behavior that you found in the previous part.
You might find the following integral useful: [ dz cos?(az) = 4—100 sin(2az) + 5.



ASI-1
The following questions concern fusion in double-shell-burning sources.

(a) Using the attached table of atomic masses, compute the energy released per baryon during

the fusion of hydrogen into helium. Assume that the total loss in neutrinos for the process is
0.51 MeV. Do the same for the fusion of helium into carbon.

(b) Write an expression for the rate at which a nuclear-burning shell advances into the material
above it.

(c) Define the condition under which the helium-burning shell will advance closer to the
hydrogen-burning shell.

ASI-2
Consider opacity and the curve of growth.

(a) For stars with temperatures and chemical compositions similar to the Sun, what is the
primary source of continuous opacity in the visible portion of the spectrum?

(b) Using the Saha equation, it can be shown that in the Sun, the dominant ionization of iron is
its singly ionized state, Fe Il. Fe | abundance are much lower. Show that the Fe | lines are
insensitive to pressure.

(c) Show the pressure dependence of the Fe Il lines.

(d) Sketch a curve of growth for an Fe Il line, qualitatively. Specifically plot the abundance as log
A vs. the log of the reduced equivalent width, log(Wx / A) for log g =2 and log g = 4.5.

ASI-3
Consider convection in a stellar interior.

(a) Consider a bubble of gas within a much larger layer. Derive an expression assuming adiabatic
conditions that may be used to assess whether convection will occur; that is, that the bubble
becomes more buoyant as it rises.

(b) Recast that result assuming the perfect gas law prevails into a relation involving the ratio of
the specific heats, Y, and the two derivatives, d log T/d log P and d log p/ d log P, where p is the
mean molecular weight.

(c) Under what conditions might d log u/ d log P become important?



ASI-4
The following questions address neutron-capture nucleosynthesis.

(a) Consider the attached figure, showing all stable isotopes of Rb, Sr, Zr, Nb, Mo, Tc, and Ru in
boxes. Those with open circles have half-lives to B-decay of at least 10* years. Empty boxes are
unstable to B-decay and have very short half-lives. Identify the isotopes of Zr, Nb, Mo, Tc, and
Ru that can be produced only by the r-process.

(b) The solar mass fraction of Mo is Xe = 1.111 x 10°, and it has an average neutron-capture
cross section of <> =112 + 8 mb at T = 30 keV. Similarly, for ®°Ru, Xe = 6.097 x 10'%°, and <o> =
206 + 13 mb at T = 30 keV. Verify that the “local approximation” for the s-process holds in this
mass region.

(c) Use this to estimate the r-process contribution to Mo, given that Xe = 1.659 x 10° and <o>
=99 + 7 mb, also at T = 30 keV.

ASI-5
This question relates to continuum opacities in stars.
Show how a discontinuity in the continuum spectrum due to atomic hydrogen over wavelength

range 0.3 —1 um can be used to measure ne of F or G main sequence stars if Tet can be obtained
by other means.



Species Atomic mass (in units of u®)

e 5.4857990 x 10™*
1.0086649
p 1.0072765
H 1.0078250
H 2.0141018
*H 3.0160493
*He 3.0160293
“He 40026032
5Li 6.0151223
Li 7.0160040
*Be 8.0053051
‘Be 9.0121821
e 12.000000
g 13.003355
N 14.003074
15N 15.000109
%0 15.994915
"0 16.999132
50 17.999161
“Ne 19.992440
Mg 23.985042
285 27.976927
=3 31.972071
SoFe 55.934942

*u = atomic mass unit = 1.661 x 10 g = 931.5MeV/c’.

An Introduction to Stellar Astrophysics Francis LeBlanc
© 2010 John Wiley & Sons, Ltd
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Protons
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*Ru,, %8Ru,, | ®Ru,, |°Ru,,|*Ru,, [1*Ru,, 104Ry,,
Tt | PTes | *Tes
o o} [e]
%Mo, | **Mo,, [ *Mo,, | *’Mo,, | %Mo, 100Mo,,
uMO“( (o]
%Nb,, | “Nb,,
OZr,p | Zry, | ¥2r,, MZre W7l
.IYm
B4Srgy 98Srgg | ¥7Srgy [ STy,
%Rb,, Rby,
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Neutrons




Speed of light
Gravitational constant
Planck constant
Boltzmann constant

Elementary charge
Alomic mass unit

Mass of electron
Mass of proton

Mass of neutron
Mass of 'H atom

Stefan—-Boltzmann constant
Thomson scattering constant

L5}

™,

m,

™",

My

2.99792458 = 10" cm/s
6.67259 x 10" cm'fg/ &
6.6260755 x 10 ergs
1.380658 x 10" erg/K
8.617385 x 10 eV/K
4.8032068 x 10 "esu
1.660540 x 10 g
93].5MeV/c*
91093897 = 10 g
0.511 MeV/¢?
1.6726231 x 10 g
938.3MeV/c?
1.6749286 x 10g
039.6 MeV/¢*
1.6735344 x 10" g
5.67051 x 10 ergdem™/K*/s
6.6524 x 107" cm’

Solar mass

Solar radius

Solar luminosity

Solar effective tiemperature
Earth’s mass

Earth’s radius
Astronomical unit
Light-year

Parsec

1.9891 x 10" g
6.95508 x 10" cm
3.8458 x 10" erg/s
5777K

59742 % 107 g
6.378136 x 10"cm

1. 4959787066 % 10" cm
9460730472 x 10" em
3.0856776 x 10" cm
3.26167ly




ASII-1

In this problem assume that there is some unknown number N, of neutrino (lepton) flavors.
You can assume that all the neutrinos are massless and that they decoupled from all other

particles when the radiation temperature cooled to 1 MeV.

(a) At temperatures below 0.5 MeV (after electron-positron annihilation was complete),

the neutrino and photon temperatures settled into a ratio of

T, 4\ /3
2"
Explain and show by calculation the origin of this number.

b) The energy density of the photons alone is given by p, = a1, where ag = m2k* /15373
Py

is the black-body constant. With a radiation fluid that is composed of only photons

and neutrinos after electron-positron annihilation, the total radiation energy density

can be written as a factor 1 4+ F times that of the photons alone,
_ _ 4
Prad = P + o= ablyT,},(1 5 F)

Incorporating the number of neutrino flavors IN,,, determine the expression for F.

ASII-2

(a) What would the primordial helium fraction (Y = 4ng./ns) be if the mass difference
between the neutron and proton was 0.647 MeV, i.e. half its actual value? The
neutron lifetime is 886 seconds. Assume that protons and neutrons froze-out at a
temperature of 7' = 0.8 MeV and that helium formed 270 seconds later when the
temperature was 0.07 MeV. Compare your result to the observed primordial helium

fraction (¥gpe = 0.25:40.01).

(b) Consider two dark matter candidates X and Y. Particle X has twice the mass of
particle Y, and its velocity-averaged annihilation cross section is half of Y’s velocity-
averaged annihilation cross section. If both particles are thermal relics, what is the
present-day ratio px/py? Assume that both particles have a freeze-out temperature

that is 0.1 times their mass.



ASII-3

In a radiation dominated universe, the temperature-time relation is

T (3155 x 1073gec\
1x 10K t

for T > 10'6 K, assuming that g, = g.¢ = 106.75 at these high temperatures.

(a) Suppose that the universe is open (negatively curved) and rapidly becomes dominated
by its curvature soon after the temperature has fallen to 3 x 10%° K. How is the above
relation altered? Calculate the age of the universe in this case when the temperature

has fallen to 3 K.

(b) Suppose a flat universe that contains only radiation and a cosmological constant with

Qa = 0.7 today. Compute the deceleration parameter
_ aa
q= a2
where a dot denotes differentiation with respect to proper time ¢, as a function of
radiation energy density Q,(2) = p.(2)/peit(2) and calculate the redshift at which ¢

changes sign.

ASII-4

(a) Derive the following relationship between the observed CMB temperature fluctuations
on scales greater than 1° and the matter density fluctuation at the time of recombi-
nation (7,) for adiabatic perturbations:

AT

1
T (10) = Oo(T:) + ¥(1y) = 765m(7'*).

(b) Qualitatively describe three ways the CMB angular power spectrum changes if the

density of baryons (;h?) increases.



ASII-5

In the future, dark energy will dominate the Universe. Assume that dark energy has a

constant equation of state parameter w (w = P/p) with —0.9 > w > —1.

(a) What is eg = —H/H? in terms of w when dark energy dominates the Universe? (A

dot denotes differentiation with respect to proper time ¢.)

(b) Evaluate the dimensionless power spectrum of the curvature fluctuations that are gen-
erated during the dark-energy dominated era for modes that exit the horizon when
a = 10° (for a = 1 today). Compare these perturbations to the perturbations that

were generated during inflation.

(c) Evaluate the scalar spectral index

n +d1n77¢
s dlnk

for the perturbations generated during the dark-energy dominated era. Provide a

physical explanation for this red or blue tilt.



Potentially Useful Formulae and Constants

c=2.998 x 10°m/s
kp =8.62 x 107°eV/K

=658 x 107 eVsec

I
mpy = 1.221 x 10 GeV = \/g

me = 0.511 MeV
m, = 938 MeV
my, = my + 1.2933 MeV

Hy=2.133h x 10742 GeV

1

f= BT L 1
1

fy= en/T(10)] _ |

T\ 32
Mgy =i (7721_7r> e™T forT < m

Pe(k) = = (£>2

Teg \Mpl

-4 (2

T mp

k=aH

Il

k=aH
4Py (k)
Pe(k)

\3
I

ds® = —(1+20)dt* + a*(t)(1 + 2®)d;;dz’da? = aP(r) [—(1 + 20)dr? + 6;5(1 + 2®)dz’da’]

d ; d
L) L

Oy + kO =0
T + kO + ar
Ro4sld® (e gl _ 46?5, pm + 4p,0]
adr \ dr adr

k2(<I> +0) = —321Ga? [0r©2 + pu N3]



