UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Doctoral Written Examination in Physics, 2013
Part I: Classical mechanics and Statistical mechanics
Saturday, May 11, 2013
Instructions: Please work in the assigned room, but take a break outside anytime you

want to. Mathematical handbooks and electronic calculators are allowed.
Begin each answer on a new sheet and write only on one side of each sheet.

Identify each sheet by:

Page of Question: The number (1-16) from the front page:
CM: Classical Mechanics
Work out 3 out of 5 problems
SM: Statistical Mechanics
Work out 3 out of 5 problems

(Partial credit will be given for partial answers)

My work is completed in full observance of the Honor code:

Signature

Print name




UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Doctoral Written Examination in Physics, 2013
Part I1: Electromagnetism | and Quantum mechanics |
Monday, May 13, 2013
Instructions: Please work in the assigned room, but take a break outside anytime you

want to. Mathematical handbooks and electronic calculators are allowed.
Begin each answer on a new sheet and write only on one side of each sheet.

Identify each sheet by:

Page of Question: The number (1-16) from the front page:

EMI: Electromagnetism |
Work out 3 out of 5 problems

QMI: Quantum Mechanics |
Work out 3 out of 5 problems

(Partial credit will be given for partial answers)

My work is completed in full observance of the Honor code:

Signature

Print name




UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Doctoral Written Examination in Physics, 2013
Part I111: Electromagnetism 11 and Quantum mechanics 11
Monday, May 13, 2013
Instructions: Please work in the assigned room, but take a break outside anytime you

want to. Mathematical handbooks and electronic calculators are allowed.
Begin each answer on a new sheet and write only on one side of each sheet.

Identify each sheet by:

Page of Question: The number (1-16) from the front page:

EMII: Electromagnetism Il
Work out 3 out of 5 problems

QMII: Quantum mechanics Il
Work out 3 out of 5 problems
(Partial credit will be given for partial answers)

My work is completed in full observance of the Honor code:

Signature

Print name




UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
Doctoral Written Examination in Physics, 2013
Part I11: Astro I and |1
Monday, May 13, 2013
Instructions: Please work in the assigned room, but take a break outside anytime you

want to. Mathematical handbooks and electronic calculators are allowed.
Begin each answer on a new sheet and write only on one side of each sheet.

Identify each sheet by:

Page of Question: The number (1-16) from the front page:

Astro I
Work out 3 out of 5 problems

Astro II:
Work out 3 out of 5 problems

(Partial credit will be given for partial answers)

My work is completed in full observance of the Honor code:

Signature

Print name




CM-1

A massless string of fixed total length | passes through a hole in a frictionless
table. A point mass m; is connected to the string and slides without friction
on the table. A second point mass ms hangs vertically below the table from
the other end of the string. The first mass moves in two dimensions but
never leaves the surface of the table and the second mass is only allowed to
move up or down.

(a) Write the Lagrangian for the system and find the equations of motion.
Describe the symmetries of the Lagrangian, the conserved quantities,
and their physical interpretations.

(b) Give the conditions for m, to remain in stationary orbit with radius a.
Find the effective potential for radial motion and sketch it.

(c) Starting with this stationary state, if the hanging mass is pulled down
slightly and released it will begin to oscillate vertically. What quantity
is conserved in the process of perturbing the system this way?

(d) Solve for small amplitude radial motion of the perturbed stationary
state. What is the frequency of this motion? Compare it to the fre-
quency of circular motion in the unperturbed state.

CM-2

A uniform stick of length 2a and mass m leans against a frictionless vertical
wall and stands on a frictionless horizontal surface. The initial angle between
the stick and the floor is ;. When the stick is released it will slide down
under the influence of the uniform gravitational field (g). For a period of time
the stick will remain in contact with the vertical wall. Note: The moment of
inertia of the stick about its center of mass is I = (1/3)ma?.

(a) Obtain an expression for the time ¢ that is required for the stick to
reach any new angle # < @, (prior to loss of contact with the vertical
wall). You may leave the expression in the form of an integral, ¢t =

[ 1(6.60) do.

(b) Given the initial angle @y, find the angle #; at which the upper end of
the stick leaves the vertical wall.



CM-3
1. Stability of rotation:

(a) Write down Euler’s equations in the absence of torque.

(b) Use these equations to derive two equations of the form
@1 = flwa,wawr, w2 =g(wr,wa)ws.

What are [ and g7

(¢) Suppose the object is rotating almost completely around the “3" axis, so that ws is large
(vou can take it to be constant) and wy,ws are small.

i. Now suppose in addition that g is the largest of the moments of inertia. What can
you say (approximately) about the behavior of wi and ws as a function of time?
What does this mean about the stability of the motion?

ii. What if I is the smallest moment?

iii. And what if 73 is between [y and [a7

CM-4
Consider a transformation for a one-dimensional system

() = gcos ¢ — psin o, P =gsing + pcos¢

(a) Are there any values of the parameter ¢ for which this transformation
appears to be canonical?

(b) If so, find the corresponding type-I generating function Fy(q, @, t), such
that p = dF;/dq and P = —dF,/00Q).

(¢) Provide an example of the Hamiltonian which has the same functional
form in terms of ¢} and P as it does in terms of ¢ and p.

(d) How can this invariance be used to find the action-angle variables for
such a Hamiltonian?

CM-5
(CM-5) The motion of a particle of mass m is confined to the curve in
the vertical x — z plane parametrized by the angle ¢ as follows:

r=1I(20+sin2¢6), z=1I(1— cos2p)

(a) Derive the Hamiltonian of the system H (¢, ps),

(b) Construct the explicit integral form of the solution S(¢, E,t), where E
is energy, of the corresponding Hamilton-Jacobi equation.

(¢) Obtain the integral equation for the system’s trajectory ¢(t) and describe
the corresponding type of motion;

(d) Find the value of the action variable J = § pgd¢ in terms of E, [, and g
(free fall acceleration);

(e) How would the energy E of the system change under an adiabatic evolu-
tion of the parameter 17



SM-1

A container of volume F held at temperatire T contains N indistinguishable
molecules (assume no internal degree of freedom). some (N,4) are adsorbed at the
adsorption sites on the internal surface of the container walls and others (Ngas =N-Nag) are
in the gas phase (considered as an ideal gas) confined by the container. The total number
of adsorption sites is Np. Each adsorption site can accommodate at most one molecule
(Nag <Np). Molecules adsorbed at different sites do not interact with each other but can
exchange with each other and move to different adsorption sites. The chemical potential

32
N A =
of an ideal gas is given by g, =k;Tln ;“’ [1}??] where h is the Planck
2amk,

constant. m is the mass of the molecule. and kg is the Boltzmann constant. Show that Ny

is determined by
~ 312

N-N_,[ I B N,
v 2amk,T (N,—N,;)a(T)
where a(T) is the partition function of a single adsorbed molecule and
InN!=NInN-N.

SM-2
As you might remember, for an ideal Bose gas
PV . .
—=mQ.V.T)=-Y In(1-ze™*') where z=e"".
T =mQGY.T) ==Y n(1-z )

For a photon gas in a cavity of volume ¥ the density of states is given by

a(z)

0 4 Qe .

= e g—% ap” | and g =2 for the two polarizations and £ = pc
For photon gas. x=0 and z=1.
27k
45(he)’

o 3 4

: X T

Reminder: | ——dx=— and

€ —1 15

O=E-TS—uN=—PV, d®=-SdT —PdV —Nd yt=—-SdT — PdV since i=0.

Show that S=¥%

SM-3

Consider N distinguishable molecules. each can be in one of the three energy
states, E=0: &: 2&.
(1) What is the Helmholtz free energy, energy and the entropy of the system at
temperature T 7
(2) What is the heat capacity Cy ?

E—:l& _— —_— —_— - it
= A A ¢ -
E:Q e —_— —— — ——

1 2 3 ¢ N



SM-4
Consider the Ising model H=—-J Z c,0; —B;JZO; where each of the NV spins

with magnetic moment g has g nearest neighbors (n.n.). N_, . N__. N,_ denote the

number of up-up. down-down. and opposite signs mnearest-neighbor spin pairs.
respectively. Define the long-range order parameter L as

[Zo‘ ] ‘V - N_ ) N . The system is placed under an external magnetic field

B.
(1) Show that the Hamiltonian can be written as

-JY o0, B,chr——J[—l‘\.’_F qNL——qNJ BuNL .

FLEL

(2) The Bragg-Williams approximation ignores the short-range order by assuming
N, /(gN/2)~(N,/ N):' . Comment on why the N, /(gN/2)=~(N,/ N)z ignores

short-range order and show that the average energy U under the Bragg-Williams
approximation is given by

1 — —
U =-—qJNL - uBNL

where the bar means the average value.

SM-5

Consider a non-interacting Fermi gas in a large 3-dimensional volume V. with

2
non-relativistic single-particle dispersion law &(p) = f)
2m

(1) Show that the grand-canonical partition function can be expressed as
Q:H(1+e_ﬁ's‘“_m].
p

(2) Derive an expression for the total particle number N. identifying the average

occupation number (np) in the limits of high and low temperatures.

.
(3) Given PV =k T In@ . show that PVzé . where P is the pressure and E is the

total energy.

(4) Compute the first three coefficients (cp. ¢1. ¢z) of the virial expansion for the pressure.

) Bu

i.e. expressing P in the expansion in the powers of the fugacity z= (co 1s the

coefficient for the term of z°. ¢ for z'. and ¢ for 23). Note that

In(1+x)= Z( 1)"1 " for | <1.



EMI-1
1. Prove Green's theorem for the electrostatic potential, namely

1
T dmeg

1
®(r) ] p(rG(r,r")dv' + — [ ] G(r, 0" \WW'&(r') - ds’' — j O(r')\WW'G(r.x') - dS’ (1)
v dm | Jav av
where V' is a closed volume hounded by a surface 3V, and G(r, ') is an appropriately chosen, normalized Green’s
function.

2. A flat, infinite conducting surface is held at a constant electrostatic potential Vp. The surface has a circular
hole, which i= filled with a circular conductor held at a different constant potential V. This second conductor
is separated from the rest of the surface by some thin layer of insulating material. Using the previous result,
find a surface-integral expression for the electrostatic potential in the region above the plane.

3. Consider the same problem as before, but now the plane is made of some material such that the electrostatic
potential is held at a constant normal derivative 8&/8n = Wy, and the circular area is held at constant normal
derivative Wi. Find a surface-integral expression for the electrostatic potential in the region above the plane.

EMI2

1. Starting from Maxwell's equations, show that in the absence of external currents J, the magnetic field H is
determined by a scalar magnetostatic potential ;. Find the equation obeyed by this potential in the presence
of ferromagnetic materials.

2. A classical model due to London for type I superconductors (those where the magnetic field B vanishes inside
the sample) assumes that there exists a constitutive relation between a stationary current J and the vector
potential A, of the form

1

J——
o3

A, (2)
Using the above relation and Maxwell’s equations, find the equation obeyed by B and show that Ap is a
penetration length scale for any static B inside the superconductor.

3. Now assume that there are no currents and B = 0 inside a spherical piece of superconducting material of radius
R. A thin magnet of length L and constant axial magnetization density M is set in front of it. The center of
the magnet lies at a distance d from the center of the sphere. The ends of the magnet are equidistant from the
center of the sphere (see figure).




Write down the magnetization of the magnet as a function of the coordinates (for some axes of your choice),
using appropriate distributions (Dirac delta functions and Heaviside theta functions).

4. Find the magnetostatic potential outside the magnet. You may assume that the magnetization density M is
unaffected by the sphere.

EMI-3
Consider a uniform wire loop shaped as a square of side length L, placed on the xy plane. A semi-infinite straight

wire 1s connected to one corner, another 1s connected to the next corner, as shown in the figure. The current I flows
from left to right.

(0,0) (L,0)

1. Taking into account that the wire is uniform, find the fraction of the current I, flowing through each of the sides
of the square.

2. Using the above result, find the direction and magnitude of the magnetic induction (B) field at the center of
the square.

EMI-4

An electric dipole moment p is placed at the center of a spherical cavity of radius R in a grounded conductor. The
‘total) potential (for r < R) receives contributions from the dipole as well as induced charge on the cavity wall.

1. Find the potential inside the cavity due to the induced charge.
2. Find the potential for all points inside the cavity.

3. Calculate the surface charge density induced on the cavity wall.
EMI-5
Consider a magnetic charge g located at the origin so that the magnetic field satisfies
V-B = 4mi(r) (3)

Away from the origin, the magnetic field is divergenceless, so one may expect it to be the curl of a vector potential
A

B=VxA. (4)
1. Show that this cannot be true evervwhere by considering the volume integration of ¥V - B around the origin

where the magnetic charge is located. It turns out that B =V x A fails to hold on a line (called Dirac string),
which we may take to be the positive z axis:



B=VxA+CHx)d(y)O(z)es (5)

where e4 is a unit vector on the 4z axis, and ©(z) is the step function (being 1 for positive z, and 0 for negative
z). Find the constant C.

2. Consider a magnetic charge g located at the origin with a particle with electric charge ¢ and mass m moving
around it. What is the equation of motion of the particle m%‘;— =..7

3. Show that the associated moment equation

dv
—=.. 6
rxXm_ (6)
can be simplified to read
dJ
P (7)
where
J=rxmv_3L (8)
eor

is, hence, a constant of motion, and can be identified as the total angular momentum operator.

4. Assume that all the components of J are quantized in units of k. Show that eg/c = nh, with n being an integer
or half-integer. This is the Dirac condition for the quantization of electric charge.

QMI-1

Vector operators:

(a) Write an expression for [J;, A;], the commutator of a Cartesian component of the ang‘ula.r—
momentum operator J with a Cartesian component of another arbitrary vector operator A.

(b) Use the result to show that the dot product A - B of two vector operators is a scalar operator.

(¢) Show that A x B is a vector operator.

QMI-2

(a) Write down the quantization condition for bound-state energies in one dimension in the WKB
approximation.

(b) Use the approximation to find the (approximate) bound-state energies for the one-dimensional

potential V (z) = ax*.

Hini:
I'(1/49r(3/2)
dy+/1—yt= —"——"""- = 0.8740...
f Y AT(7/4)
(¢) Use the approximation to find an algebraic equation for the (approximate) bound-state energies

in the potential

k(r—a) z>a

Viz)=40 O<z<a.
V(—z) =z<0

with a, k = 0.



QMI-3

A particle with mass m and electric charge g is trapped in a one dimensional harmonic oscillator
potential:
1 .
Viz) = §mw2m2

It also experiences an external, uniform electrical field of strength Ey applied along the +x direction.
For t < 0 the particle is in the ground state of this hamiltonian. At t = 0, the electric field is abruptly
turn off. Find the probability that a particle will be in the nth energy eigenstate the instant after
the field is turned off. The nth eigenstate for the SHO is given as:

b (z) — (M) _L /2
Un(@) = (G7)" Ty Hnl©)e

with £ = «.;’%x. You may also find the generating function identity of Hermite Polynomials usefil
for this problem:

[=<]

T
8_32-1-23-5 _ ;—Hﬂ,(‘f}
nl
=0

QMI-4
A particle of mass m is constrained to move freely on only the curved surface of a spherical hemisphere
(half of a sphere).

(a) Find an expression for the energy-levels of the particle in this system and justify your answer.

(b) Write down, in terms of spherical harmonics, the wave functions and degeneracies for the first
three energy levels.

You may assume without proof the following properties of Associated Legendere functions for this
problem:

PP (~a) = (~1)*mB(a)
If P"(x) has even parity, then F/"(0) # 0

QMI-5

Consider a spin-1/2 particle in a uniform magnetic field along 2 direction. The Hamiltonian is given
by H =wS, . At time £ = 0 the state is |a) = a|+) + b|—), where a and b are real numbers.

(a) Calculate the expectation values (S}, (Sy), at t = 0.
(b) Show that at a late time ¢,

{Se); = (Sz)geoswt — (Sy)gsinwt
(Sy); = (Sy)gcoswt + (Sz)ysinwt



EMII-1
Consider Maxwell’s equations in the absence of material media and sources.

1. Write down Maxwell’s equations and show that they can be written in
manifestly Lorentz-covariant form. What is the physical significance of
this result?

2. Prove that if the electric and magnetic fields are orthogonal in a given
inertial reference frame, they are orthogonal in all inertial frames.

3. Show that if a given inertial frame observes a pure electric field, there
is no inertial frame in which the field is purely magnetic.

EMII-2

Consider Maxwell’s equations without sources inside an infinite cylindrical
cavity of arbitrary cross section.

1. Write down Maxwell’s equations and show that, if the cavity is filled
with a uniform non-dissipative medium of permittivity € and perme-
ability u, then Maxwell's equations imply

(V2+;Lew2)E = 0 (1)
(V2 +pew®) B = 0 (2)

where a harmonic time dependence with frequency w is assumed for
the fields.

2. By separating variables in the longitudinal and transverse directions,
show that

(VP +pew® — k) E=0 (3)
(V7 + pew® —k*) B =0, (4)
where k is an unspecified integration constant, and VZ = V2 — ;'fg is

the transverse part of the Laplacian operator.

3. Re-write Maxwell’s equations to show that the transverse components
of the fields, E; and B, are completely determined by the longitudinal
components E, and B,.



EMII-3

An electron and a positron (mass m,) with equal Lorentz factors v approach
each other with a relative angle of # between their directions of motion (as-
sume their directions of motion are at angles +6/2 relative to the z axis).
The pair annihilates and creates two photons. One photon has energy E,
and moves forward along the r axis, while the second photon has energy Fs
and moves in the opposite direction.

1. In terms of the provided parameters, determine the energies of the
photons, Ey and Es.

2. In the limit as # — 0, determine the way in which the two photon
energies depend upon 7 (for v > 1).

EMII-4
A dextrose solution is optically active and is characterized by a constitutive
relation for its polarization of the form

P=7VxE (5)

where 7 is a real constant that depends only on the dextrose concentration,
which is assumed to be homogeneous. The solution is non-conducting and
non-magnetic.

1. Write down Maxwell’s equations for such a dextrose solution. Derive
the equation obeyed by the electric field.

2. Consider a plane electromagnetic wave of (real) angular frequency w
propagating in the 2 direction. Write down the form of the electric field
E of such a plane wave and, using the previous result, find the possible
propagation modes for such a wave.

EMII-5
1. Start with the infinitesimal space-time interval (invariant under Lorentz
transformation). Show that the proper time d7 of a particle in terms of
the time interval dt in the coordinate system in which it is moving with
an instantaneous velocity ¥'is given by d7 = dt /v where v = (1—2)~1/2
and =17, /c. Then derive the relativistic 4-velocity of a particle moving
with velocity 7.

2. Start with the Larmor formula for the power of radiation of a slowly
moving charged particle (with charge e) P = %(dﬁjdt]z. Show that
the power of radiation for a fast moving char§ed particle in a circle

L § . . . - . _ 2e%e n4_ 4
with radius p is approximately given hy P = 3_,9’-’"'8 ~*.

3. Show that the power of radia}ion of a fast moving charged particle
in general is given by P = 35(a% — of) where @ = '3 - 058 + 7?7,
apg = —7*f - 7 and 7 = d/dt.



QMII-1
Consider a spinless particle of mass m that experiences a three-dimensional hamiltonian:

P’ 2 2
H = —+1E1']I +|I‘C-Q'y'
2m

where k; and k5 are real-valued constants. You may ignore translational motion along the z-axis
for this problem. Show explicitly for this system that the angular momentum along the z-axis is
generally not conserved and find a relationship that must %; and k&, satisfy for it to be conserved.

QMII-2

Problem 2

Consider a two level system with E; € E;. There is a time dependent potential

that connects the two levels as follows:

wt

Vii=V»=0, Vp=ye'“, Vu=ye' (y is real)

At t = 0 it is known that only the lower level is populated, i.e. ¢ 1 (0) = 1 and
c 2{ﬂ]=0.

a) Find |c1(t]|23nd ||:1|:‘I::l|2 for t>0 by exactly solving the coupled

differential equation

ik (de / dt) = E:2n=1 Vin (t) & ' imkn K cn  (k=1,2)

b) Do the same problem using time dependent perturbation theory to lowest
nonvanishing erder. Compare the two approaches for small value of .,

Treat the following two cases separately i) @ very different from ¢, and,

i) cw very close to twyq,

(Fact: These are known as Rabi’s formula)



QMII-3

Suppose, we want to solve the problem of a particle in a potential V (r) = —Ae_r/

? Which is a
model for the binding energy of a deuteron due to the strong nuclear force, with A=32 MeV and
a=2.2 fm. The strong nuclear force does not exactly have this form, since unlike in the case of
the Coulomb interaction we don’t know what the exact form should be, but the above potential
is a reasonable model.

1.Estimate the ground state energy by choosing a trial wave function for the ground state and
compare it to the exact answer E = -2.245 MeV.

2. Describe the symmetry considerations you used for choosing the trial wave function.
QMII-4

1. A particle of momentum K is scattered off a spherical symmetric scattering potential
U(r) = Uyexp(—12/R?).

(a) Using the first order Born approximation to show that the differential cross section is

2p2
. 6 . .
S% = u?R? exp (— 1 ) , Where ¢ = 2K sinis the momentum transfer, @ is the
. UpR?
scattering angle, and u = i@:ﬁz—n

(b) Given the differential cross section of (a) show that the total scattering cross section is

2?;2 (1 — exp(—2K*?R?)).

QMII-5
2-electron system
1.a) Consider the total spin angular momentum operator of two electrons,
Siotal = 51 @ Ss. Using the standard representation for each electron, 5, = %c’rﬂ with o

N 1 0, . : _— . N .
spin eigenstates {{}} and ( 1 ), find the eigenvalues of S7._,; for the spin singlet and spin
triplet states of the two-electron system. Show the derivation.

h.) Describe the total wave function of the two electron system as the product of
a spatial wave function ¢(7;,75) and the spin states discussed in (a). From your under-
standing of the statistics of electrons, what is the symmetry property under the exchange
of the two electrons of the spatial wave function and of the spin wave function in each of
the following:

the para state
the ortho state.

c.) If the two electrons discussed above are part of a multi-electron atom, describe
which of the two states in (b) is lower in energy and why. Explain why an anti-symmetric
spatial wave function implies a lower probability for small separations of the electrons than
a symmetric one.



Astrol-1

1. a. Use dimensional arguments and the equation of state for a non-relativistic de-
generate gas to derive a mass-radius relation for white dwarfs.

b. Two white dwarfs have the same temperature, but one is brighter. Which is the more
massive?

c. Use dimensional arguments to show that the pressure and density go to zero as the mass
goes to zero. Clearly, the density can’t be zero, but what you've shown is actually correct.

Explain this apparent paradox.

Astrol-2

2. Show that the stellar luminosity L and mass M have the following approximate
scaling relations:

a. For very massive stars (M >> 30M,), L oc M. Thompson scattering is the main source
of opacity in these stars and Py, << P

b. For intermediate to high mass stars 5M;, << M << 30Mg, L o M?®. Again, Thompson
scattering is the main source of opacity, but Py, >> P a4.

c. Low mass stars (M =~ 1IMg), L o M”, where b &~ 5.5. However, these stars are more
complicated. Here P, >> P,,; and the opacity is dominated by free-free transitions with
k oc pT~ /2. In this case you'll also need an approximate mass-radius relation. Assume that

these stars burn hydrogen via the pp chains with e oc pT™.
Astrol-3

3. a. Near the solar photosphere, the Rosseland mean opacity is kp ~ 0.24 em? /g,
which is mainly due to bound-free and free-free absorption of trace amount of H™ ). Given
that the opacity of H™ is & 7.2 x 107¥p(g/cm®)V2T(K)” em?/g, What is the density of
the photosphere?

b. What is the ionization fraction of H atoms at the solar photosphere? What is the
electron number density? (Hint: In doing the calculation, you can assume that gas consists
only of H atoms, free electrons and protons; The abundances of other species are much
smaller).

c. The H atom can capture an electron to form H™ and release 0.75 eV (i.e., the binding

energy of H™ is 0.75 eV). What is the H™ /H ratio in the solar photosphere?



Hint: You'll need to calculate partition functions to do parts b) and ¢). For the H
atom in it’s ground state, there are two spin orientations for the electron - spin up and spin
down. If excited states can be neglected, then Uy = 2. You can use this logic to caleulate
the partition functions for H" and H™. However, vou'll need to argue that you can neglect

excited states in calculating U.

Astrol-4
4. a. A star of mass M uses up all of its nuclear fuel. Find its rate of contraction

if the luminosity L. = const. Show that for times much greater than some characteristic

time, the rate of contraction is
—aGM?
A — 1
" o (1)

where « is a constant determined by the distribution of matter within the star.
b. Show that when a self-gravitating body of polytropic gas shrinks homologously and
adiabatically, its thermal energy scales with radius R as B, o R*!"7. Show that a

polvtropic star is unstable to gravitational collapse if v < 4/3.

Astrol-5

5. A 1000 K spherical gray body source of radius 1 m and emssivity e, = 0.9 is
viewed in air by a detector distant 1 km. The entrance aperture of the optics is a cirele of
radius 5 mm, has field of view diameter 0.2°, and transmits 90% of the incident light to the

detector. The detector operates at 1 pm wavelength and has 0.01 pm bandpass.

a. Compute the luminosity of the sphere and the power received by the detector.

b. Estimate the average number of photons detected each second.



Speed of light
Gravitational constant

N

2.99792458 = 10" cm/s
6.67259 x 10" em'fg/ §°

Planck constant h 6.6260755 x 10 ergs
Boltzmann constant k 1.380658 x 10 "erg/K
B.617385 x 107%eV/K
Elementary charge ¢ 4.8032068 x 10 "esu
Alomic mass unil u 1.660540 x 10+ g
93]1.5MeV/e*
Mass of electron ", 91093897 x 10 *g
0.511 MeVic?
Mass of proton ™, 1.6726231 x 10°*g
938.3MeVic?
Mass of neutron m, 1.6749286 = 10 g
939.6 MeV/c”
Mass of 'H atom my 1.6735344 x 10*g
Stefan—Boltzmann constant a 567051 x 10 erglem™ /K s
Thomson scattering constant Oy 6.6524 x 107" e’
Solar mass M 1.9891 x 10"g
Solar radius R 6.95508 % 10™em
Solar luminosity L 3.8458 x 10" erg/s
Solar effective temperature Tert 5TTTK
Earth’s mass M. 59742 % 10°7g
Earth’s radius K. 6.378136 x 10°cm
Astronomical unit AU 1.4959787066 x 10" cm
Light-year Iy 9460730472 x 10" cm
Parsec pe 3.0856776 x 10" cm

3.26167ly




Astroll-1

Assume that an EO elliptical galaxy’s mass density distribution is spherically symmetric
and given by a Jaffe model,

_M_a
Anr2(r +a)?’

plr)

where M is the total mass and a is a characteristic radius.

Ll

[

. Determine the mass M (r) contained within a radius r and confirm that the parameter

M is the total mass.
Calculate the gravitational potential ®(r) (subject to the condition ®(co) = 0).
Determine the radial component of the gravitational acceleration ar(r).

Obtain the profile v.(r) for circular orbit velocities as a function of r.

. Find the leading part of the asymptotic expansion of &(r) for r/a — oo. Find the

leading part of the expansion for r/a — 0. Comment on the two results.

Astroll-2

Consider an axisymmetric galactic potential ¢(R,z), where R, z, and ¢ are cylindriecal
coordinates. Consider a star of unit mass (m = 1) moving in this potential, so that ®(R, =)
is the potential energy and

T:% R? 4+ 3% 4 (Rp)?] .

is the kinetic energy.

1. Write down the effective potential d.q(f, z) for two-dimensional motion in R and =

with constant J..

Assume the potential is symmetric across the equatorial plane, z =0 (Le., §(R. 2) =
$(R, —=)). What are the conditions on the effective potential and energy E such that
R = Ry and 2z = 0 represent a eircular orbit moving in ¢ with constant velocity {17

Assume the effective potential can be expanded to have the form
1 1
Dar(R,2) = ar(Ro, 0) + 52 (R~ Ro) + 502+,

referred to as the epicyclic approximation. Find the equations of motion in R and z,
give the form of R(t) and z(¢), and sketch the motion in the R-z plane.

What are the three constants of the motion in the case of an infinitely thin disk? Why
is the total angular momentum J not a constant of the motion?



Astroll-3

Consider a spherical gas cloud of uniform temperature T and density p.

a)

b)

d)

For the range of sizes for which the pressure in the gas cloud can be considered negligible
compared to the collapse time, write down the collapse time in terms of p.

[3kT .

j—— where m is the

\ 2m

mean particle mass. estimate the critical cloud size at which the pressureless assumption
breaks down and the cloud is stable against collapse.

Assuming the sound speed is related to the temperature by v, =

By computing the self-potential energy and kinetic energy of the cloud. prove that the
critical cloud size in part b is roughly equivalent to the virial radius for a cloud of this
temperature and density.

Suppose that the cloud is located in a rotating galaxy disk. Explain qualitatively how the
critical cloud size for stability will change and why. Since this change implies that the
stable cloud size will no longer be approximately equal to the virial radius computed
above, has the virial theorem been violated?

Astroll-4

Consider a group of 40 galaxies with radius ~1 Mpe and typical orbital velocity ~300 km/s.

a)

b)

d)

Recall that the change in velocity for galaxy 1 caused by a distant weak encounter with

.
- mg

galaxy 2 is AV, =

where b is the impact parameter and V is their relative velocity.

Roughly at what minimum impact parameter bmin does the weak encounter approximation
break down? For a perturbing galaxy of mass ~10'® M, estimate the value of by,
Comment on the scale of buin compared to typical galaxy diameters and separations.

Approximating the group as having constant density and the perturbing galaxy mass as
. \
m; ~ 10 My, on avera ge. prove that the mean square random velocity c(& v} ) that

develops for galaxy 1 perpendicular to V due to many weak galaxy encounters in time f is

(AV_}) _ SJzGEm;mhl{ b.. | |
14 \ Dy

From the result in part b, what is the two-body relaxation time triax as a function of ¥, mo,
and n?

S . . . . . . . . i/
Using conservation of kinetic energy. explain qualitatively how the increase in KA Vf}

leads to dynamical friction and thus to the merger of the group galaxies. From the V
dependence of trelax. exXplain why this process is quicker in groups than in clusters.



Astroll-5
Consider a thin galaxy disk, roughly 4 kpe thick and 40 kpc in diameter.

a) Use Gauss’s theorem (the divergence theorem) to show that just outside the disk. the
restoring force is 27GY toward the plane of the disk (i.e.. F, = —EEGE‘“‘/ ). where
2=¥(r) is the surface mass density of the disk. Why is this calculation correct only just

outside the disk and not to arbitrarily large |z|?

b) Suppose that the density is nearly constant p=p. at small z-heights within the disk,
|z|<100pe. In this regime. expand the potential as a Taylor series to second order in z.

¢) Prove that the vertical force at |z]<100pc is F=-4nGp.z. What type of motion occurs at
these small z-heights? How do you know it does not continue to arbitrarily large |z|?

Possibly Usefill Formulae
G = 4.3 x 10° kpe (knv/s)* /M.,
1kpe = 1Gyr x 1km/s

Poisson Equation V*® = —47Gp
]. (} i". }‘2 a(D \

;)

spherically symmetric case V® —

Porl or )
2
thin disk case B_?J =—AAGp

o

Wien's Law T =3 mm-K / Apeak

tidal acceleration a=2Gm(2r)/d3 where d = the distance between galaxies, m = the mass of the
perturbing galaxy. and » = the radius of the galaxy being perturbed

Mp
V 2

dav
dynamical friction E =—

ram pressure of hot gas Pam=phot Vel

—

N | 3m
freefall time 7, = [ ——
\32Gp
R
. . | 3T
dynamical time 7, = |——
\16Gp
CTOSSing time togpss = RSV
. . 0.1N
relaxation time £, ~——I___
InN 7
e . 264x10" (1, V([ v, f10°M,, )
dynamical friction decay time f, = | | — ‘ : ‘yr
InA |\ 2kpe ) \ 250km/s ) M




Useful facts:

F= Gm1m2/d2

G=4.3 x 10° kpc (km/s)*/Msun

1kpc = 1Gyr x 1km/s

Virial Theorem 2KE+PE=0

Poisson Equation V?p=—-42Gp

Wien’s Law T = 3 mm-'K/ Apeax

centripetal force F=mV?/r (uniform circular motion)
Faber-Jackson Relation L o« ¢*

Dynamical time tgy,=V2ty

Crossing time t..ss = R/V = 1 Gyr (R in kpc/V in km/s)
Relaxation time treax = 0.1N / IN(N) teross = 10° yr x 0.1N/In(N) x (R in pc/V in km/s)

Numerical Constants:

Solar Mass (Msun): 1.989 x 10* g

Solar Radius (Rsun): 6.96 x 10*° cm

Solar Luminosity: 3.847 x 10*® erg/s

Gravitational Constant (G)  6.6726 x 10 cm®/g/s®

Proton mass 1.6726 x 10 g = 938.27 MeV/c?
Yield of p-p reactions (Q)  26.7 MeV = 4.28 x 10 ergs
Boltzmann constant 1.38 x 10 erg/K

Planck’s Constant 6.626 x 107 erg-s

Electron mass 9.109x 10% g

m, = 1.6726 x 10°** g



