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CM-1

A point particle of mass m moves in a plane in response to the following
Lagrangian

L=1im(2* + 7 + 2aiy) — 3k (2* + v* + 2B2y)

where k = 0 Is a spring constant and a and /3 are two other time-independent
parameters.

(a) Find the normal mode frequencies, w 5.

(b) What conditions must be placed on & and 3 so that the motion is always
a bounded, stable oscillation?

(c) Find the eigenvectors of the system.

(d) Sketch the motion in the x and y coordinate system for the two eignemodes.
How does the behavior depend upon the values of o and 57

CM-2

Consider a straight cylindrical shaft of radins o = 1m that penetrates
through the center of the earth. It emerges at latitudes # and —@ rela-
tive to the equator. Assume that the earth is a perfectly homogenous sphere
of mass M and radius R that rotates with angular velocity w. A test point
mass of mass m is suspended at rest relative to the shaft directly above the
svmmetry axis of the shaft and then released to free-fall down the shaft. You
may neglect air-friction and relativistic effects for this problem. Answer the
following questions:

(a) Use a non-inertial Cartesian coordinate system where one axis points
down the center of the shaft and another along the east-west direction
to provide a gualitative description of the test mass’ motion.

(b) Find the equations of motion of the test mass in the reference frame
from part (a). Recall that the fictitious force experienced by a mass m
in a reference frame rotating at a constant angular velocity is given by:

F = Fcoriolis + Feentrifugal = —2m€2 x vp —mi) x (Q x 1‘)

(c) Discuss the motion in the specific cases where §# = 0° and # = 90°, If
the test mass experiences any oscillatory motion, find the period of the
oscillation(s).

(d) In the “shallow approximation”, e is small enough so that the test mass
only falls a short distance, d < R, before it hits the side of the shaft.
Find an algebraic equation for d in the shallow approximation. Do not
attempt to solve it.

(e) Assume that the test mass is dropped down the hole in the northern
hemisphere. If vou stand over the shaft so that north is at 0 radians,
at what angle will the test mass hit the side of the shaft in the shallow
approximation?



CM-3

A particle of mass m moves under the influence of gravity, with downward
acceleration g, on the inner surface of the paraboloid of revolution, 22 + 42 =
az. Here a = 0 is a length scale and the surface is assumed to be frictionless.
The coordinate z points upward in the vertical direction.

(a) Write down the Lagrangian and show that the equations of motion can
have the form

p— pd”® = 2)p,
d(p*¢)/dt =0,
F=—g—al,

and
2

az=p,
where we have converted to cylindrical coordinates (p, @, 2).

(b) Now let the particle be given an angular velocity of 1/2¢g/a, so that it
orbits in a horizontal circle. Prove the stability of the particle in this
circular path by showing that if the particle is displaced slightly from
this path, while holding the angular momentum fixed, it will undergo
oscillations about the path.

(c) Find the frequency of the radial oscillations.

CM-4
Consider the Lagrangian for a two-dimensional system
L =142 — equge.
where ¢ is a positive constant.

(a) Solve the equations of motion and describe the physical system that the
Lagrangian defines.

(b) The Lagrangian is invariant under the scale transformation
A —A
gl — e"q . Gz —r € {2,

for arbitrary A. Use Noether’s theorem to find the conserved quantity
associated with this invariance, and interpret its meaning.

(¢) Suppose the two coordinates g, and g, are the z and y coordinates of a
single object. What property of the object does the conserved quantity
describe?



CM-5

A ball is bouncing vertically and perfectly elastically in an elevator that aceel-
erates from rest with acceleration a(t). The rate of change of the acceleration
a(t) is very slow: a(t)T < g, where T is the period of the ball’s motion and
¢ is the usual acceleration of objects in the earth’s gravitational field.

(a) The equivalence principle says that this situation is equivalent to what
other situation?

(b) If the ball has maximum height hy above the floor of the elevator before
the acceleration begins, what is the maximum height h(t) at a later
time £, in the adiabatic limit?

SM-1

Consider an 1deal Bose gas (non-relativistic) contfined to a region of area 4 in two
dimensions. Express the number of particles in the excited states. N, . and the number of particles

in the ground state, N, in terms of z. T, and 4. and show that the system does not exhibit Bose-

Einstein condensation unless T — 0 K.

(g,(2)=

1 T " ldx .

T 7 -1 0<z<1 and g,(1)=<(n) and (1) == )

0

SM-2
Consider N identical, localized. noninteracting spins with spin quantum number j. The
magnetic moment of each spin 1s 1= g, j where g is the Bohr magneton. g is the Lande factor,
and the eigenvalues of j _. the magnetic quantum number m, are m=—j,—j+1L...j—1.j. In the

N

presence of an external magnetic field H the energy of the system is given by E = —Z ;- H.
=1

(1) Show that the magnetization is given by M_ = Ngu; jB(x)

where x = gupHj kT and B (x) 1s the Brillouin function grven by

B.(x)=(1 +L)coth (1 +i)x —icoth -
! 2j ) i 27

NE MU +D)

(2) Show that for x = gugHj / kT < 1. the magnetic susceptibility is given by ¥ = T
Kg

a1
(cothx =~ x 1+Ex for x=<1)



SM-3
Consider a classical gas of N identical particles. The energy of the system is given by
v =

H=Z?;+;EMa4w

- g
i=l =

br

In the dilute (atomic volume x N << ¥/ N ) and high temperature (|U| < kT ) approximation it can

be shown that the partition function can be written as

N
1[1 h
Z(T.ZV.N)=—| — | O0.(FV.T) where A=————
(T.V-N) N!{f] Os(-1) J2amk, T

where the configurational integral O, (V.T) is given by
'Q__\; (V. T:} - V:\" + ]}r.\'—lz j d}r;_j d}rk (e_U.); "k#.‘lr_ 1}
i<k f

Assume the potential is given by the hard sphere potential

o0

?;—?}C‘{FD

n-nl)=

U, o
al 0 ‘r;.—rk‘zrn
Show that the equation of state 1s given by

F}J
P[V—N'; 7 J — Nk,T

SM-4
Consider the closed (this means that the nearest neighbors of spin 1 are spin 2 and spin N) 1
D Ising model where the Hamiltonian 1s given by

¥
H, (Jl.....JN) = —IZ 0,0, — JHBZJ:. :  o,==1 and n.n.=nearest neighbors

o i=l

4 is the magnetic moment. B 1s the magnetic field. and 7 is the coupling strength. The mean-field
approximation predicts a spontaneous magnetization below a critical temperature T, =27 / kg . The

exact solution shows that the mean-field approximation made qualitatively wrong prediction. Such
phase transition does not exist in 1D. Show that the exact free energy is given by

F=—kTln(4" +4)

where

Ay =e"" cosh(uB kT )+ Je_y BT 4™ sinh® (uB / kgT)

From this you can derive the magnetization and see why there 1s no spontaneous magnetization at
T=0 K. However. you don’t have to show this here.

SM-5

A cylinder of radius R and length L contains N molecules of mass m of an ideal gas at
temperature T. The cylinder rotates about its axis with an angular velocity o.
Find a change in the free energy of the gas AF, as compared to that at rest.



EMI.1
(a) For an arbitrarily moving charge, the charge and current densities
are p(7,t) = ed(F— R(t)), j(7,t) = e(dR/dt)5(F— R(t)), where R(t) is the po-

sition of the charged particle. Verify the statement of conservation of charge.

(b) Find the total charge and the electric dipole moment of the charge
density p(7) = —d - V4(F).

() What electromagnetic fields do the following potentials describe?
¢ =0,A =a(a- ), where @ is a constant vector.

EMI.2
Start with the potential due to a given local charge distribution around

the origin of the coordinate system ¢(7) = [(dr’) lptﬁf’} If the total charge

F—r|
of the given charge distribution is zero, show that (a) the potential , in its
leading behavior for large distances, has the form

o(F) = ’i—f where the electric dipole moment is given by d = [(dr')r'p(r).

(b) Consider an additional point charge e; located at a point ¥ lying far
from the dipole; the interaction energy is given by E = d - %:3 Show that
we can interpret this energy as the interaction energy of the dipole moment
with the electric field E produced by e; at the origin, ie., E = —d-E.

(c) Use E = —d; - E as the interaction energy of an electric diple mo-
ment d; with the field E produced by a given charge distribution far from
d;. Calculate the interaction energy E for dipole-dople interaction, i.e., for
the interaction of d; at the origin with the field E produced by another
dipole moment dy located at .

EML3
(a) Show that a perfectly conducting sphere of radius a placed in a con-
stant magnetic field By acquires a magnetic moment i = —%{1350.

(b) Find the surface current density K.

(c) Show that the values for i and K are consistent with each other.

EMI-4

Consider two straight parallel wires, carrying static charge with linear charge density

of p and —p , respectively. The wires are along the z-direction, one is located at x = ¢/,
and the other atx = — 2/,

(a) Find the electric potential and the electric field everywhere in space.

(b) Simplify your expression for the region far away from the wire, and express the field
in terms of the linear dipole density p=pa.



EMI-5

Consider two parallel plane electrodes (regarded as infinite) separated by a distance d.
The cathode located at x = 0 with electric potential of @ (x = 0) = 0 is capable if
emitting unlimited electrons (charge e and mass m) when an electric field is applied to it.
The electrons leaving the cathode with zero initial velocity are accelerated toward the
anode located at x = d with electric potential of (x = d) =V}, . In the steady state there
will be a constant electric current flowing from the cathode to the anode.

(a) Find a relationship between the current density J, the space charge density p(x) and

the electric potential ¢(x) in the space between the two electrodes. Is J a constant or a
function of x, why?

(b) Derive a differential equation that determines the electric potential ¢ (x).

(c) Assuming a power law solution (¢ (x) is proportional to x¥), solve for the potential
density J in terms of e, m, d, and V.

OQM1-1 Two electrons interact via a spin-spin interaction that is given as
v 51 - Sg where a is a constant. One of the electrons is also trapped in
a region with a homogeneous external magnetic field of intensity Bj.
Please answer the following questions:

(a) What is the sign of a7 Explain your answer.

(b) Consider only spin degrees of freedom and find the allowed energies
of this system in terms of fundamental constants and o.

(c) Assume that we create an ensemble of these two electron systems.
For each member of this ensemble, we perform a measurement of
the spin of the electron that is trapped in the magnetic field region
along the direction of the magnetic field. What is the average
energy of the subset of the ensemble with measured spin in the
same direction as the magnetic field?

QM 1-2

(a) Consider a Hamiltonian H(A) that depends on a parameter A, one of the Hamiltonian’s

eigenstates |p(A)), and the corresponding energy E(A). Show that
dE()\) dH(A)
= (ip(A o(A))
I (p(A)| ) lp(A)

a result that is known as the Hellman-Feynman theorem.
(b) The states of the hydrogen atom with no radial nodes (n =1+ 1) have energies

4
.\ —E£m
(

El)= ———
bl 41)2

Letting H(A) be the Hamiltonian for the radial Schrodinger equation and the parameter
A be l, use the Hellman-Feynman theorem to derive an expression for the expectation
value of the operator r—2 in states with no radial nodes.



ONM1-2 Consider an electron that is free to jump between 3 fixed, identical

QMI-4

atoms in a molecule. Each atom is located at a corner of an equilat-
eral triangle. Ignore spin and any other nearby electrons and atoms.
We can define an orthornormal basis set of states of the electron to be
spherically symmetrical orbitals bound to each atom. In other words,
|S;) would correspond to an electron bound to the ith atom. In this ba-
sis the Hamiltonian for the system has all off-diagonal elements equal to

£ and the diagonal elements equal to zero. Please answer the following
questions:

(a) Given that one of the energy eigenvalues is 2¢, find the other energy
elgenvalues.

(b) The Hamiltonian is obviously invariant under rotations of 2w /3.
Find a matrix to represent such a rotation operator (R) and find

the simultaneous eigenstates of H and K. You may find the fact
that R* = 1 useful.

(d) Assume that at ¢ = 0 the electron is in the |S;) state. Find the

probability that the electron will stay bound to that electron as a
function of time.

A paradox:

(a) Show that for finite-dimensional matrices A and B,

(b) In the 1-d harmonic oscillator, the raising and lowering operators a’ and a obey the

Tr[A, B] =0.

commutation relation

The trace of I is obviously not zero. In the basis of oscillator eigenstates, write down
the matrix representations of a and a' (you can write down the upper left parts and
indicate the rest with dots). Multiply them together to get the matrix representations

[a,ait =1.

of aa’ and a'a and explain why the result from part a) doesn't apply.



QMI-5
(a) Write down or derive the equation of motion for the density operator p(t).
(b) Use the solution of (a) to show whether or not a mixed state can evolve into a pure state.

(¢) The reduced density operator for a two-particle system is defined as the trace of the two-
paticle density operator over the states of the second particle. For the simple two-particle
density operator p = |avjan) {5152/, the reduced density operator is given by

pr = |lag}(Bi] Trflag) (Bal] -

All two-particle density operators can be written as sums of simple ones like that above,
and pp 1s defined for these more complicated cases in the obvious way, by invoking
linearity.

The reduced density operator is an effective operator for a single particle that takes
into account our complete ignorance of the other particle. Consider a two-spin density
operator assoclated with the pure spin-singlet state, i.e.

p=15=0)(s=0)

where
w=m=§gu+—kﬂy

Find the reduced density operator. Does it correspond to a pure single-particle state
or a mixture of single-particle states? If the former, what state, if the latter, what
polarization?



EMII-1

A nonrelativistic particle of mass m and charge e, and initial kinetic energy
E., makes a head-on collision with a fixed central force region with poten-
tial energy V(r). The particle comes from an infinite distance away. The
potential energy steadily increases toward the center so that

Vir) < E, for > T,
Vir) = E, for < T
1. Find the instantaneous total radiated power as a funection of position.

2. Integrate the power over all time to find an expression for the total
radiated energy.

3. Assuming the potential energy and its derivative at the turning point
are finite, show that the integrated emission is finite.

EMII-2
A high energy photon of energy F encounters an electron of mass m and
charge e at rest. A scattering oceurs with a photon of energy E’ emerging
and moving at an angle # relative to the direction of motion of the original
photon. The electron recoils with some Lorentz factor 4 and angle ).

1. Find the expression for the scattered photon’s energy in terms of the
original photon’s energy F, the electron mass m, and the scattering

angle .

2. Derive an expression for the Lorentz factor v = E™°!/(mc?) of the
recoiling electron.

EMII-3

Two parallel dielectric media are backed by a perfect electric conductor
as shown in the accompanying figure. A source, to the left of the first inter-
face, initiates an incident plane wave described by e*20+%/2) with perpen-
dicular polarization (i.e., the electric field being perpendicular to the plane
of incidence.) The reflected wave is represented in terms of rpe—*F2(z+2/2),
Find the reflection coefficient r,. Next, find the absolute value of the coef-
ficient and then give a brief physical interpretation of the result.

€ €1 Perfect conductor

Z=-al2 Z=0




EMII-4

Start with the Maxwell’s equations in vacuum in terms of the electric
field E, the magnetic field B, the charge density p and the current density
;,f: Write E and B in terms of scalar potential ¢ and vector potential A.

{a) Show that, in the Lorenz gauge, the potentials obey the differential

equations: —DA = :171‘}'}’ c and a similar equation for ¢, where I stands for
the d’Alembertian.

(h) Show that the potentials can be solved in terms of the sources j and
£ by using the Green’s function technique with the Green’s function obeying
the equation —DG(F — ', t — t') = dwd(F — r")b(t — t').

(¢) Assume that the equation has been solved (you do NOT have to solve
the equation) to yield G(F — v, t — ') = F_‘;,lé{i;wf— | — (t—t)).
Which sign should we use and why? Finally wnite down the potentials as
integral equations of the sources.

EMII-5

Consider a coaxial waveguide. Let the inner radius be b, the outer radius
a. Assume a — b << a. Find the cutoff wavenumbers for the TM mode.
[Hint: You do not need Bessel functions and you may note that for ®(p)

. . 2 ‘ \ 2 N
satisfving (%%pf—b—%—l—w‘?]@{p} = (), one has {ﬁ;—%}—k%ﬁ;—kjﬂ@@(m ==
0.]
QMII-1

a) Assuming that the hamiltonian is invariant under time-reversal,
prove that the wavefunction for a spinless non-degenerate system at any given
instant of time can always be chosen to be real.

b) The wavefunction for a plane wave state at t=0 is given by a
complex function e tpx Why does this not violate time reversal invariance?



QMII-2

A p-orbital electron characterized by |n, I=1, m =+ 1, -1, 0> (ignore spin) is subjected to
a potential V = & (x* — y?) where A =constant.
a) Obtain the ‘correct’ zero-order energy eigenstates that diagonalize the

perturbation. You don’t need to evaluate the energy shifts in detail, but show that
the original 3-fold degeneracy is now completely removed.

b) Because V is invariant under time reversal and because there is no longer any
degeneracy, we expect each of the energy eigenstates obtained in (2) to go into
itself, (up to a phase factor) under time-reversal. Check this point explicitly.

MII-3
\(/?Vork out the quadratic Zeeman effect for the ground state of hydrogen atom,
[<x|0>= 1/ (na03)1/2 e 7r/ao ] due to the neglected term “ &2 A? / 2m¢c? « in the
hamiltonian taken to first order. Write the energy shiftas A = -y B?/2
and obtain an expression for “ ¥ .
This is a useful integral:  [%e 2 r"dr =n!/@").

QMII-4

Three spin -0 particles are situated at the corners of an equilateral triangle. Let us define
the z-axis to go through the center and in the direction normal to the plane of the triangle.
The whole system is free to rotate about the z-axis. Using statistics considerations, obtain

restrictions on the magnetic quantum numbers corresponding to J, .

QMII-5
Consider scattering from the delta-shell potential V(r) = gd(r - o).
a) First determine the boundary conditions at r =0 and r = ry , then make a suitable

ansatz, apply the boundary conditions, and compute the s-wave scattering
amplitude.

b) Determine the s-wave bound states of an infinite spherical well of radius ro.
Comment on the relation of the delta —barrier resonance and these bound states.
What happens to the s-wave scattering length when the incident k-value sweeps
across the “k” corresponding to one of these quasi bound state



Astrol-1  White Dwarfs

a)

b)

c)

1 o0}
The pressure integral: P= §_[ pVﬂ( p)dp
0

allows you to calculate pressure given a distribution in momentum n(p)dp.
Assuming that a completely degenerate electron gas has the electrons packed as
tightly as possible, so that their separation is of order ng™*, use the Heisenberg
uncertainty principle to estimate the momentum of an electron in terms of n. By
further assuming that p = mev (non-relativistivic) and that all the electrons have
the same momentum (to make the integral trivial), derive the exponent n in the
power law equation of state:

Poc p'T?

(For this problem, don’t worry about the constants of proportionality, they’ll be
wrong under the constant momentum assumption anyway.)

Now use your understanding of this equation of state and hydrostatic equilibrium
and mass conservation in scaling law form to plot white dwarf cooling curves on a
log Teff,- log L (H-R) diagram. Work in solar units and use the normalization
that an 0.6 solar mass white dwarf has a radius of 0.01 Rsun at solar Teff. Plot
curves for 0.2, 0.6, 0.8 1md 1.0 solar mass white dwarfs.

Now write the mass-luminosity relationship for non-relativistic white dwarfs in
power law form.

Astrol-2  Deuterium burning in stars

a)

b)

In the formation of a main sequence star from a protostar there is a phase in which
primordial Deuterium is fused. This happens at a temperature of 10° degrees
rather than the 15 x 10° required for P-P reactions. Use hydrostatic equilibrium
and mass conservation, along with the ideal gas law, to compare the radius of a 1
solar mass protostar in its D burning phase to its radius on the main sequence.
You need to assume the density profiles of the two stars are identical (one can be
scaled to the other).

Referring to the curve of binding energy below, estimate the total energy
available from D burning for a solar mass star if the primordial D abundance is
0.013% of P, and occurs in the inner 10% of the star. (Deuterium fuses via 1H +
2H —> 3He + )

Compare the D-burning timescale to the Kelvin Helmholtz (gravitational
contraction) timescale.



Average binding energy per nucleon (MeV)
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Astrol-3 Lifetime, luminosity, mass scaling
a) Use the plot below to estimate the exponent for a power law relation for main
(94

sequence lifetime in terms of stellar mass: L oC M

b)  Assuming that all main sequence stars convert the same fraction of their total mass
to He, what is the expected Mass-Luminosity relation on the main sequence? How
closely do the luminosities expected from this relation match the luminosities seen
in the H-R diagram depicted? Comment.

c)

Assuming the gas in these stars is ideal (a fairly good assumption) and that the
central temperature is proportional to the effective temperature (not so good), use
the assumption of hydrostatic equilibrium and the Mass-Luminosity relation from
above to estimate the temperature dependence of the nuclear reactions (assume
negligible density dependence).
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Astro 1-4

a Centauri A is G2 like the Sun but older, having 1.14 Mg . 1.23 Rg, and 1.5 Lg. It is 1.34 parsecs
from us in an 80-year elliptical orbit with @ Centauri B. B is tvpe K1, has 0.92 Mg, 0.86 Bg, 0.5
L. and approaches A to 11.2 AU separation. Assume that both stars emit as blackbodies and

consider a planet in a circular orhit around B.

(a) Assume that the planet cools as a blackbody throngh a non-greenhouse gas atmosphere that
reaches 1 Earth surface pressure. Caleulate the inner (water steam Tormation) orbital radius
in AU of the “habitable” zone around B, ignoring Tor now star A, Take planet albedo as 50%
and assume rapid rotation.

(b) Show quantitatively that there is no significant change in the zone’s outer radius (water ice
formation) aronnd B even when star A is closest.

(¢} Like Earthlings, the o Centanrians are loading COs into their atmosphere as they rapidly
burn up fossil fuels. Assuming that their planet has average temperature 40 °C but that the
increasing COs will soon push it to 50 °C, caleulate

i. what fraction of the sunlight should be blocked by a perfectly opaque sunscreen to reduce
insolation on the planet to restore its pre-COq equilibrinm temperature, or alternatively,

ii. by how much they must increase planetary albedo at visible wavelengths through chemical
modification.

Astrol-5

The diagram helow plots colors of many stars with Sloan ¢ 17 through the 4 5DSS filters
indicated, over a lield in onr Galaxy, Assume that the colors have been corrected for reddening.

[a) Where [easible, identily the spectral classes, evolutionary stages, and approximate masses of
stars near each of the numbered regions.

(b} Assuming that most of these stars Tormed in a burst, estimate the mean age today of this
population if they show similar chemical composition to that of the Sun.

(e} What is the phyvsical explanation for the strongly curved “tail™ ar 27

o —_—— — e e e




Astroll-1

It is possible to caleulate the nuclear statistical equilibrinm at high densities
between neutrons, protons, and electrons in a neutron star by treating each
as an ideal Fermi-Dirac gas component. For equilibrium to oceur there has
to be a balance between

mn—p+e 4+,

and
pHe —n+ v,

and in a neutron star we assume the neutrinos escape.

At high enough densities the muon (another fermion) can appear, changing
an ideal n — p — e gas into an ideal n — p — e — p gas. If it is energetically
feasible, the two reactions,

HT e+, + e,

and
e _3"“__'_17;.[_'_1/'::

may OCCur.

(a) Write down the set of thermodynamic equilibrium equations between
dimensionless Fermi momenta z,., x,. x,, and z,. and the expression
for the total energy density.

b) In terms of the masses of the particles, m,., m,. m,,, and m,, determine
P i

z., T, and x, at threshold for the appearance of mmons in the gas.

{You do not need to obtain numerical values.)



Astroll-2

The Universe contains cosmic ray particles, including a very high energy
power-law distribution. The very highest energy cosmic ray protons are
measured to have energies up to around 102° eV. At that energy the spectrum
cuts off, though there is controversy over the statistics of the very highest
energy events.

The GZK mechanism is thought to limit the highest energy that a proton can
have because scattering of the relativistic proton off of a cosmic microwave
background photon can, at a certain threshold, produce a pion. Once thresh-
old for pion production is reached. the proton loses approximately 20% of its
energy per pion scattering. The reaction is

P+ Yemb — P+ 7

where the most favorable case is for the CMB photon to be traveling in the
opposite direction of the initial proton.

(a) Let the proton mass be m,, the pion mass be m., and the CMB photon
energy be E. The Lorentz factor of the proton before scattering is
and after scattering is +. Assume the reaction is just at threshold to
make a pion. Find the expression for the required initial proton Lorentz
factor 7y in terms of the other masses and energies.

(b) Take the proton mass to be m, = 938 MeV, the pion mass to be m, =
135 MeV, and the CMB photon energy to be E = 2.5 x 10~* eV (note:
eV). Find the approximate GZK cutoff energy for the protons.



ASTR II Problem 3

A thin accretion disk surrounds a Schwarzschild black hole. The gas can
be treated as if approximately in isolated circular orbits. Recall that (more
general) radial orbital motion satisfies

(fj—) — B V()

where the effective potential V(r) is

Vir) = (1—21—:{) (1+§).

Here F is the relativistic specific energy (E — 1 for particles just unbound
at infinity) and L is the specific angular momentum (units with G = ¢ = 1).

(a) Go throngh the caleulation and show that the innermost stable eircular

orbit (ISCO) is at » = 6M.
(b) Find the values of E and L at the ISCO.

Assume that £ = 1 — E is the radiative efficiency of the disk. Assume further
that at any given time the disk is being fed with mass at just the right rate
M to maintain Eddington luminosity, dE/dt = Laga.

(c) Material at the ISCO plunges into the black hole via a short spiral. As-
sume the [SCO orbital constants are preserved during this brief plunge.
Derive an equation for the growth of the black hole mass (in terms of
the various physical constants including G and ¢). Solve for M(t)
assuming that M = M, at ¢ = 0.

(d) Estimate how long it takes for the black hole to spin up to a/M =
J/M? ~0.09.

In parts (¢) and (d) continue to treat the black hole as if it remains a

Schwarzschild black hole.



ASTROII-4. Binary Survival in Supernova Explosion and Kick

Velocity

a. A progenitor of a supernova of mass M, and a companion star of mass M, are in a
circular orbit about each other of semi-major axis a = a, + a,., where a, and a, are with

respect to the system’s center of mass. Determine expressions for a,/a and a./a.

b. Determine an expression for the angular speed w, = w, = w of the stars an a function of

M= M,+ M, and a.

¢. Determine expressions for the velocities v, v,, and v = v, + v, of the stars as functions

of M, M., M, and a.

d. The progenitor supernovas leaving behind a nentron star of mass Mys. Determine an
expression for the mininmim mass that the companion star must have for the binary to

survive (as a function of M, and Myg).
e. Determine an expression for the momentum of the supernova shell.

f. Determine an expression for the kick velocity of the binary system.



ASTROII-5. Colonization of the Galaxy

Assuming that humanity has mastered efficient, controlled fusion as an energy source,
estimate how long it will take for us to colonize the Galaxy. (The text is long, but the

caleulations are short.)

a. Assume that the mass of our unfueled ships is similar to the mass of our fuel supply (*He,
collected from gas giants at each stop). Also assume that we are generating energy via *He
+ 3He — *He + 2p and converting it to kinetic energy near 100% efficiency (difficult to
do, but theoretically possible). Very roughly, estimate how fast our ships would go. (The
simplest back-of-the-envelope estimate matches the exact caleulation within a factor of ~2,

so do not waste time on the exact calculation.)

m, = 1.007276 u
Mg, = 3.016020 u
g, = 4.002602 u

b. How long would it take our ships to travel from our location to the far side of the Galaxy

if not interrupted by stopping to colonize worlds?

c¢. Roughly, how many star systems are in the Galaxy? Roughly, what is the volume of
the Galaxy in cubic light years? Consequently, what is the typical distance between star

systems? How long would it take our ships to travel this distance?

d. Assume that all stars have at least one planet in the traditional habitable zone. But also
assume that humanity is not interested in tidally-locked planets. If the atmosphere is thin,
only the ring around the planet in constant twilight would be habitable (a far way to travel
for not much surface area). If the atmosphere is thick, it will redistribute the heat from the
star-facing side to the dark side and the entire surface would be habitable, but the winds

could be violent.



The distance at which planets tidally lock to their stars scales with M2, where M is the
mass of the star. In our solar system. Mercury is tidally locked but Venus is not. The
distance at which planets are in the traditional habitable zone scales with L'/2, where L is
the lnminosity of the star. In our solar system, Earth is in the middle of the traditional
habitable zone. Assuming a reasonable stellar mass-luminosity relation, estimate below
what stellar mass M roughly Earth-mass/size planets near the middle of the traditional

habitable zone are tidally locked.

e. Very roughly, what fraction of stars have masses above M? Also very roughly. of
these what fraction of stars are not in binary (or multiple) systems? (In binary systems,
planets can only be in stable orbits if close enough to one of the stars to be tidally locked,
or if far enough from both stars to be outside of the traditional habitable zone.) Given
these factors, and any others that you wish to include, estimate what fraction of stars
have planets acceptable for colonization (assuming that the remaining stars have at least
one planet, or moon around a hot Jupiter, in the traditional habitable zone that can be
sufficiently terraformed; we will not consider worlds in non-traditional habitable zones, such

as tidally-heated moons of regular, cold Jupiters).

f. Given your estimate, what is the typical distance between habitable planets? How long

would it take our ships to travel this distance?

g. Generational ships must be large enough to support a population with sufficient genetic
diversity, but not so large of a population as to make the ship too expensive/time-consuming
to build and fuel. Assume 100 - 1000 people per ship. Given humanity’s current level
of technological and medical advancement. our population is doubling every 40 vears.
Arguments can be made for both faster and slower growth rates, with future levels of
technological and medical advancement, but slowed by the challenges of terraforming

and/or (presumably controlled) genetic adaptation to the new environment. Simply using



humanity’s current rate, roughly estimate how long it would take a generational crew to

fully populate an Earth-like planet?

h. Assume that we fullv populate each world before we send out new generational ships,

presumably in all (unsettled) directions. The time that it would take to colonize the entire
Galaxy is then no different than the time that it would take to colonize an approximately
direct path from our location to the far side of the Galaxy (of course avoiding the Galactic

center). Given your estimates, how long is this time?

Is this timescale short or long? Specifically, if this timescale is much shorter than the typical
timescale for a habitable planet to develop life and civilization to the point of mastering
fusion, the first civilization to master fusion will likely get the whole Galaxy. Given that we
are probably only hundreds of years away from mastering fusion (at most), in this case the
Galaxy is either 100% ours, or it has already been fully colonized by an earlier civilization
which for whatever reason decided to leave us alone (but in which case the Galaxy is 0%
ours). If this timescale is much longer than the typical timescale for a habitable planet
to develop life and civilization to the point of mastering fusion, the Galaxy will likely he
colonized by many civilizations, in which case we are likely to get at least a part of it, but
only a part. Assuming that hmmanity survives the next few hundred years, what does our

long-term future look like?



Useful facts:

F= Gm1m2/d2

G=4.3 x 10° kpc (km/s)*/Msun
1kpc = 1Gyr x 1km/s

Virial Theorem 2KE+PE=0

Poisson Equation V@ =-41Gp
Wien’s Law T = 3 mm-K / Apeak
centripetal force F=mV?/r (uniform circular motion)

Faber-Jackson Relation L « ¢*

Dynamical time tay,="2t;

Crossing time teoss = R/V = 1 Gyr (R in kpc/V in km/s)

Relaxation time tyea = 0.1N / IN(N) teoss = 10° yr x 0.1N/IN(N) x (R in pc/V in km/s)

Numerical Constants:

Solar Mass (Msun): 1.989 x 10 g

Solar Radius (Rsun): 6.96 x 10*° cm

Solar Luminosity: 3.847 x 10 erg/s

Gravitational Constant (G)  6.6726 x 10® cm®/g/s?

Proton mass 1.6726 x 10 g = 938.27 MeV/c?
Yield of p-p reactions (Q)  26.7 MeV = 4.28 x 10™ ergs
Boltzmann constant 1.38 x 10 erg/K

Planck’s Constant 6.626 x 107 erg-s

Electron mass 9.109x 10% g

m, = 1.6726 x 10 g



